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PREFACE

The idea behind this book originated at a meeting held in Caramulo in Portugal in
September 2003. The participants agreed that, though the field of natural dynamos
(planetary, stellar and galactic) was rapidly evolving and attracting the interest of
researchers in other branches of fluid mechanics, there was no comprehensive intro-
ductory book for researchers or graduate students entering this research area. The
organisers therefore decided to take advantage of the broad-based knowledge of the
invited lecturers at the conference to assemble a “multi-authored monograph”. De-
spite the obvious contradiction in this phrase, it does reflect the spirit in which this
book was prepared. While each section of the book was written by specialists in dif-
ferent aspects of this subject, a concerted effort has been made to provide a unified
presentation, which develops concepts in a coherent order and, where feasible, uses
consistent notation.

The first part of the book is devoted to the theoretical background that forms the
foundation of dynamo theory and which is necessary to describe and understand
natural dynamos. The first chapter introduces the governing equations and outlines
kinematic dynamo theory. Although linear equations are often considered as simple,
the reader will see how even the kinematic theory of dynamo action can raise subtle
issues. The second chapter turns to nonlinear effects. These include amplitude
saturation, but also intricate dynamics such as polarity reversals. Because of angular
momentum conservation, most natural objects are rapidly rotating. This induces
very specific effects in their relevant fluid dynamics. These are discussed in the
third and last chapter of this part.

In the second part of the book, we turn our attention to natural dynamos and their
modelling. Amongst natural dynamos, the one which we know best is without doubt
our own planet, the Earth. We therefore begin the fourth chapter with a description
of the Earth’s magnetic field and our present understanding of its characteristics. In
the following chapter, we turn to the other planets of our solar system. In the sixth
chapter we study the magnetic field of stars, including our own star, the Sun. The
seventh chapter addresses dynamo action on an even larger scale, that of galaxies.
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xxii MATHEMATICAL ASPECTS OF NATURAL DYNAMOS

Finally, we describe experiments conducted over the years which try to model natu-
ral dynamos. We conclude with some speculations about future research directions
in this rapidly evolving subject.

The understanding of the origin of magnetic fields in astrophysics and geophysics
provides a considerable challenge. The authors in this book convey their interest
and enthusiasm for their individual field of research. We hope that the reader, what-
ever his background or research experience, will find that this book has reached
our desired objective. That is to bridge the gap between mathematicians, physicists,
geophysicists and astrophysicists, each working on natural dynamos using their own
specific approaches. We hope that the reader will come to enjoy the complexities of
this fascinating area of research as much as the many authors of this book do.

Emmanuel Dormy and Andrew Soward
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CHAPTER 1

INTRODUCTION TO SELF-EXCITED
DYNAMO ACTION

Benoı̂t Desjardins, Emmanuel Dormy
Andrew Gilbert & Michael Proctor

The theory of self-excited dynamo action discussed throughout this volume was
first suggested by Sir Joseph Larmor in 1919 to account for the magnetic field of
sunspots. This concept was later formalised mathematically by Walter Elsasser
(1946). The objective of this first chapter is to introduce the subject and provide
the necessary background for the later developments. As such, we derive the rel-
evant equations and discuss the usual approximations in Section 1.1, before intro-
ducing the concept of a homogeneous self-excited dynamo in Section 1.2. Having
dispensed with these preliminaries, the existing theoretical results and necessary
conditions for dynamo action are then presented in Section 1.3 and the essential dis-
tinction between steady and time-dependent velocities then follows in Section 1.4.
In Section 1.5, we then introduce the concept of mean field electromagnetism, which
will be a reoccuring topic throughout the book. Finally, in Section 1.6, we discuss
the difficult large magnetic Reynolds number limit, which is relevant for astrophys-
ical problems.
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4 Benoı̂t DESJARDINS & Emmanuel DORMY

1.1. GOVERNING EQUATIONS

1.1.1. MAGNETIC INDUCTION

The common aspect among all natural objects described in this volume is their abil-
ity to maintain their own magnetic field. While the magnetic field is maintained,
it does vary in both space and time and the equation that governs its evolution is
known as the “induction equation”, which we will derive below. However, before
we continue, it is helpful to note here that we will discuss throughout the book a
variety of conducting fluids ranging from molten iron in the Earth’s core to ionised
gas in stars and galaxies, Despite this variety, the evolution of the magnetic field in
all these fluids can be accurately captured by the induction equation.

THE INDUCTION EQUATION

To begin our derivation we need to start from Maxwell’s equations which are

∇ × E = −∂tB , ∇ × B = μ j + ε μ ∂tE , (1.1a,b)

∇ · B = 0 , ∇ · E = ρc/ε , (1.1c,d)

where the following notation ∂t · ≡ ∂·/∂t has been used. In these equations B is the
magnetic induction (often referred to as the magnetic field), E is the electric field, j
is the electric current density, ρc is the charge density, μ is the magnetic permeability,
and ε the dielectric constant. To continue with our derivation, we will assume the
free-space value for the magnetic permeability, i.e. μ � μ0 = 4π × 10−7 and also
ε � ε0 = (μ0c

2)−1, then equation (1.1b) can be rewritten as

∇ × B = μ j + c−2 ∂tE . (1.2)

Now the last term can be neglected provided the typical velocity of the phenomena
(i.e. the ratio of a typical length to a typical timescale) is small compared to the
speed of light c. This is the case for all the objects dicussed in this book. Therefore
we will neglect this term in the rest of the derivation and so

∇ × B = μ j . (1.3)

An additional constitutive relation is now required, and this is known as Ohm’s law,
which relates electric currents to the electric field via the electrical conductivity, σ ,
by the relation

j = σE . (1.4)

These equations are valid in a reference frame at rest. However, in general the
fluids that we will consider are not at rest, and so it is necessary to introduce some
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1.1 – GOVERNING EQUATIONS 5

modifications for the case of a moving medium at velocity u. Following standard
electromagnetic theory, we write⎧⎪⎪⎨

⎪⎪⎩
E′ =(1 − γu)

u · E
|u|2 u + γu (E + u × B) ,

B′ =(1 − γu)
u · B
|u|2 u + γu

(
B − u × E

c2

)
,

(1.5a,b)

where γu = (1 − |u|2/c2)−1/2 is known as the Lorentz factor.

Following our assumption that |u| � c, the Lorentz factor can be set equal to unity.
Then, from equation (1.1a), it follows that |E| ∼ |u| |B| , where |u| is the ratio of
a typical length to a typical time. So that the only modification associated with the
displacement of the reference frame is

E′ = E + u × B , (1.6)

and so Ohm’s law becomes

j = σ (E + u × B) . (1.7)

For simplicity, let us now assume that the medium is in a neutral state, by which we
mean that we take

ρc ≡ Zi ni − e ne = 0 , (1.8)

where ρc is the charge density, Zi is the average charge of ions in the medium, and ne

and ni are the number densities respectively of free electrons and ions. It should be
noted that, as stressed by Roberts (1967), this assumption cannot be rigorously valid
in a conducting fluid, since the divergence of equation (1.7) together with equations
(1.1d) and (1.3) implies that

∇ · (u × B) = −ρc/ε . (1.9)

Because ∇ · (u×B) �= 0 the charge density cannot be exactly vanishing. However,
by assuming that ε is negigibly small, we can neglect ρc in the sequel.

To continue with our derivation, we note that electric currents are present in the
medium provided ue �= ui, and so

j = Zi ni ui − e ne ue , (1.10)

then using equation (1.8) we obtain

j = −e ne u′
e , where u′

e = ue − ui . (1.11)
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6 Benoı̂t DESJARDINS & Emmanuel DORMY

Formally, three equations of motion should now be established, namely one for each:
neutrals, ions and electrons. However, much of the work to understand the main-
tenance of magnetic fields is carried out in what is referred to as single-fluid mag-
netohydrodynamics (MHD), where the key assumption is that collisions occur often
enough to mechanically couple all three components. This assumption requires spe-
cial care concerning ions and neutrals. It is important to point out that while the
single-fluid MHD approximation is clearly valid for the Earth’s core or for solar dy-
namics, in some weakly ionised plasmas relevant to the interstellar medium (ISM),
the drift of charged particles with respect to the neutrals can become significant.
This effect is referred to as ambipolar drift, or ambipolar diffusion.1 This effect will
not be considered at this stage.

The relative velocity of electrons to ions, u′
e, can be estimated from the amplitude

necessary to produce electric currents compatible with the observed magnetic fields
for the geophysical and astrophysical applications addressed in this book.

From equation (1.3) and equation (1.11) we write

|u′
e| �

|B|
μL |e|ne

, (1.12)

which can be used to obtain the following rough estimates of u′
e.

For the case of the Earth’s core

|u′
e| �

10−4

4π × 10−7 × 106 × 2 × 10−19 × 1029
� 10−20m s−1 . (1.13a)

For the case of the Sun’s interior

|u′
e| �

10−1

4π × 10−7 × 2 × 108 × 2 × 10−19 × 1029
� 10−14m s−1 . (1.13b)

In galaxies

|u′
e| �

5 × 10−10

4π × 10−7 × 1020 × 2 × 10−19 × 103
� 10−8m s−1 . (1.13c)

In all these cases the velocity of the flow |u| (i.e. for both the ions and neutrals)
is much larger than |u′

e| . The typical velocity |u| in the slow moving liquid iron
that resides in the Earth’s core is of the order of 10−4m s−1 and it is much larger in
the Sun and in galaxies. These are thus extremely small deviations from the mean

1 The term “ambipolar diffusion” can be slightly misleading, since this effect is not strictly equiva-
lent to resistive diffusion. In particular, it preserves magnetic topology (as will be discussed later
for ideal MHD). Still, this effect acts to damp fluctuations on small scales.
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velocity. This demonstrates that, in these contexts, the single-fluid MHD approxi-
mation is valid. Therefore, from here on we will assume un � ui � ue , but retain
the small difference u′

e = ue − ui only as a source of magnetic induction.

The curl of equation (1.7), together with relation (A.21) and equation (1.1c), now
yields

∂tB = ∇ × (u × B) + η ΔB , (where Δ ≡ ∇2) , (1.14)

the coefficient η = 1/(σ μ) is referred to as the magnetic diffusivity, assumed here
to be constant. One must not forget that there is an additional constraint provided by
equation (1.1c), namely

∇ · B = 0 , (1.15)

and note that, provided this constraint is satified at a given time, equation (1.14) will
ensure it remains satisfied for all time.

Using relation (A.27), equation (1.14) can be rewritten as

∂tB + u · ∇B = B · ∇u + η ΔB . (1.16)

At times, when considering the evolution of the magnetic field, it is helpful to work
with the vector potential, A , and not B itself. Equation (1.15) can conveniently be
used to rewrite the magnetic field in terms of A, i.e.

B = ∇ × A . (1.17)

INFLUENCE ON MATTER

We have seen above how the motion of a conducting fluid can affect the magnetic
induction, but this is just part of the story. The induction equation derived above is
just a convenient starting point in dynamo theory. With this equation alone, and a
prescribed flow, the magnetic field is governed by a linear equation (this is referred
to as the “kinematic dynamo” problem, and will be discussed later in this chapter).
The magnetic energy can, in this case, grow exponentially and reach unrealistic
values. This does not happen in reality because the magnetic field can change the
flow via a force, the Lorentz force, in such a way as to avoid this scenario.

The Lorentz force density is given by

FL = niZi (E + ui × B) − nee (E + ue × B)

= j × B = μ0
−1(∇ × B) × B , (1.18)

where equations (1.8) and (1.10) have been used. This force density applies to the
single-fluid described above. It can be expanded as

μ0
−1(∇ × B) × B = μ0

−1
[
(B · ∇)B − 1

2
∇|B|2

]
, (1.19)
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where the first term is known as the “magnetic tension”, and the second as the “mag-
netic pressure”.

1.1.2. THERMODYNAMIC EQUATIONS

In the case of planets and stars, it is expected that convection is the main way by
which m otions are generated in the fluid. We will assume, for simplicity, a single
driving m echanism for convection in this section. However, we note here that this
assumption is not fully valid for example when investigating the Earth’s core, for
which compositional as well as thermal driving need to be considered. A similar
set of equations can however be recovered in this case by introducing a codensity
variable accounting for both of these effects. For a rigorous derivation of the equa-
tions in this more complicated case (and including turbulence modelling), the reader
should refer to Braginsky and Roberts (1995, 2003).

We use standard notations, and so P , ρ and T , respectively denote the pressure,
density and temperature. We assume that the equation of state of the fluid is given by
the following three thermodynamic coefficients, namely the expansion coefficient at
constant pressure, αP , the specific heat at constant pressure, cP , and the polytropic
coefficient, γ , which can be expressed as

αP = −T

ρ

∂ρ

∂T P

, cP =
∂H

∂T P

, γ =
ρ

P

∂P

∂ρ S

, (1.20a,b,c)

where H denotes the specific enthalpy, and S denotes the specific entropy of the
system.

From the second principle of thermodynamics, we deduce that

dE = TdS +
P

ρ2
dρ , (1.21)

where E = H − P/ρ denotes the specific internal energy, and so

cP = T
∂S

∂T P

. (1.22)

Finally, we introduce for convenience

αS = −1

ρ

∂ρ

∂S P

=
αP

cP

. (1.23)

All thermodynamic relations are deduced from equation (1.21) and the preceding
three coefficients. Indeed, from equation (1.21) we can write

dP

P

(
1

γ
+

Pα2
P

ρTcP

)
=

dρ

ρ
+

αP dT

T
, (1.24a)
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dS

cP

=
dT

T
− PαP

ρTcP

dP

P
, (1.24b)

αSdS =
1

γ

dP

P
− dρ

ρ
. (1.24c)and

Introducing the heat production, δQ, the heat flux, q, and the rate of internal dissi-
pation per unit volume, E (including viscous and ohmic dissipation), we can rewrite
the second principle of Thermodynamics, using the fact that TdS = δQ = −∇ · q,
as

ρ DtE − P

ρ
Dtρ = −∇ · q + E , where Dt ≡ ∂t + u · ∇ (1.25a,b)

denotes the lagrangian derivative.

This expression, together with Fourier’s law of heat conduction for the temperature
T (introducing the thermal conduction coefficient k)

q = −k∇T , yields ρ T DtS = ∇ · (k∇T ) + E . (1.26a,b)

It is also useful to define the thermal diffusivity κ ≡ k/(ρ cP ).

1.1.3. NAVIER-STOKES EQUATION

The compressible Navier-Stokes equations include the continuity equation,

∂tρ + ∇ · (ρu) = 0 , or Dtρ = −ρ∇ · u , (1.27a,b)

and the momentum equation, written in a rotating reference frame

ρDtu + 2 ρΩ × u = −∇P − ρ∇Φ − ∇ · τ + F , (1.27c)

where Ω is the rotation vector (in the direction of the rotation axis and with the
rotation rate as magnitude), F represents all remaining body forces (including the
Lorentz force), and τ is the viscous stress tensor, with components

τij = −2ρνSij , Sij = εij − 1
3

(∇ · u) δij , (1.27d,e)

ν being the kinematic viscosity, Sij the strain rate tensor

Sij = 1
2
(∂iuj + ∂jui) , (1.27f)

and Φ includes the gravity potential Φg as well as the centrifugal potential ΦΩ .

The apparent gravity field is then provided by g = −∇Φ, and here there are two
contributions to Φ. In a non rotating problem, the gravity potential is simply ob-
tained from

ΔΦg = 4πGρ . (1.28)
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In a rotating fluid, this potential is complemented by the effect of the centrifugal
potential

ΦΩ = −1
2
Ω2s2 , ΔΦΩ = −2Ω2 . (1.29a,b)

For a galactic disc, density is low and so centrifugal effects are essential, because
they balance the radial component of gravity. As a result, the apparent gravity is
oriented along the axis of rotation.

For much denser objects, such as the Earth or the Sun, the role of the centrifugal
effect is much smaller. It essentially acts to flatten equipotential surfaces. This effect
is minute for these objects, which are almost spherical bodies. One can then assume
for simplicity that gravity potential varies only with radius. On a given sphere of
radius r, and outward normal n:∫

S(r)

∇Φ · n dS = 4π G

∫
V (r)

ρ dV , (1.30)

masses at larger radii cancel their contributions. So for a sphere of uniform density,
gravity is proportional to radius, we have

g = −4
3
πGρr er. (1.31)

Note that using equation (1.27a,b), the energy equation (1.25a) can be rewritten as

ρ DtE + P ∇ · u = ∇ · (k∇T ) + E . (1.32)

This set of equations needs to be completed by an equation of state relating P, E, ρ,
and T as described in the previous section.

The equations described above are appropriate to describe the dynamics of galaxies.
Simpler models can however be derived for convection in planets and stars, and this
is the purpose of the next section.

THE ANELASTIC APPROXIMATION

The anelastic approximation relies on two simplifying assumptions (see Ogura &
Phillips, 1962; Gough, 1969). The first one consists in filtering out acoustic waves,
while the second implies linearising fluctuating variables around the reference state.
Both can be achieved by an appropriate asymptotic expansion.

We begin by rewriting the above set of equations in dimensionless form. As such we
introduce a typical velocity U∗, length L∗, density ρ∗, and temperature T∗. Equation
(1.24b) provides P∗ = ρ∗T∗cP ∗/αp∗ = ρ∗T∗/αs∗. Having defined four units, and
since nine parameters define our problem (L, T∗, ρ∗, cP ∗, αp∗, ν, k,G, Ω), five inde-
pendent non-dimensional combinations can be constructed. We define the Reynolds
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number Re, the Rossby number Ro (measuring the ratio between the rotation and
the hydrodynamic timescale), the Froude number Fr (measuring inertia versus grav-
ity forces), the ratio X of gravitational to pressure forces, and finally the Prandtl
number Pr (measuring the ratio of the thermal diffusion timescale to the viscous
timescale),

Re =
U∗L∗

ν
, Ro =

U∗

ΩL∗
, Fr =

U 2
∗

L∗g∗
=

U 2
∗

4πL2
∗Gρ∗

, (1.33a,b,c)

X =
ρ∗g∗L∗

P∗
=

αs∗ρ∗4πL2
∗G

T∗
, Pr =

νρ∗cP

k
=

ν

κ
. (1.33d,e)

The equation of mass conservation retains its form, whereas the momentum and
energy equation can be rewritten (note that ρ is now dimensionless) as

ρDtu +
2

Ro
ρk × u = − 1

XFr
∇P +

1

Fr
ρeg +

2

Re
∇ · (ρS) , (1.34)

where k denotes the unit vector along the rotation axis, Ωk = Ω .

To simplify the following development, we have dropped here the forcing term F .
However, the Lorentz force will be re-introduced later in the resulting equations.
This simplification although convenient, is not necessary. For a full treatment, in-
cluding the Lorentz force, the reader is refered to Lantz & Fan (1999).

We can also assume at this stage that we are dealing with a perfect gas, and so cP

can be regarded as constant. The final equation, the entropy equation, then becomes

ρ T DtS =
1

PrRe
ΔT − 2XFr

αS∗ Re
ρS : ε . (1.35)

Let us stress again that, although we use the same symbols as previously, all quan-
tities are now dimensionless. In addition, note that we used the notation “:” for the
double contraction of two tensors, i.e.

S : ε = Tr(S · ε) = Sij εji . (1.36)

Heat transfer is particularly important for stars and planets as it will induce convec-
tive motion directly related to dynamo action. Since we are dealing with convection,
it is helpful to define a reference state. The best reference state is the neutrally stable
one, with constant S (this is not the diffusive state). The governing equations can
then be rewritten in terms of deviations from this reference state. This leads to the
“anelastic approximation”. These deviations are assumed to be small compared to
the reference state. This assumption is well justified in a strongly convective state
and away from boundary layers.
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The reference state mentioned above is assumed to be fully decoupled from possible
nonlinear correlations of the perturbed state, so that the dynamics of ρa, ua and Sa

are given assuming an isentropic equilibrium (∇Sa = 0). Finally, let us recall that
in the limit of no thermal or radiative conduction, entropy Sa is uniform, and the
corresponding temperature profile is the adiabatic profile Ta.

All quantities are expanded as

ρ = ρ0 + ερρ1 , P = P0 + εP P1 , (1.37a,b)

T = T0 + εT T1 , S = S0 + εSS1 . (1.37c,d)

Linearization of the equation of state around the reference state provides

ερ = εP = εT = εS = ε .

We assume here that all quantities in this expansion (ρ0, ρ1, P0, P1, T0, T1, S0, S1)
are order one. As such, the mass conservation equation becomes

∂t(ρ0 + ερ1) + ∇ · [(ρ0 + ερ1)u] = 0 , (1.38)

and to leading order (because ρ0 is not a function of time) this is

∇ · (ρ0u) = 0 . (1.39)

Neglecting higher order terms ensures the filtering of elastic waves out of the result-
ing model, hence the name “anelastic”.

The conservation of momentum equation can be expressed in a similar manner, i.e.

(ρ0 + ερ1) [∂tu + (u · ∇)u] +
1

XFr
∇(P0 + εP1) +

2

Ro
(ρ0 + ερ1)k × u

=
1

Fr
(ρ0 + ερ1)∇(Φ0 + εΦ1) −

2

Re
∇ · [(ρ0 + ερ1)S] . (1.40)

The coupling between energy and Navier-Stokes equations in this limiting process,
necessary for convection to occur, requires ε ∼ Fr . This scaling reveals at leading
order (1/ε)

1

X ∇P0 = −ρ0∇Φ0 . (1.41)

Equation (1.41), together with equation (1.24c), provides the balance relevant for
the reference state.

At the next order (ε0), we get

ρ0 [∂tu + (u · ∇)u]+
1

X ∇P1 +
2

Ro
ρ0k×u = −ρ0∇Φ1−ρ1∇Φ0−

2

Re
∇ · (ρ0 S) .

(1.42)
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It can be useful to manipulate this expression, following Braginsky and Roberts
(1995, 2003), by making use of thermodynamic relations. From equation (1.24c)

0 =
1

γ

∇P0

P0

− ∇ρ0

ρ0

, (1.43)

while from equations (1.24b) and (1.24c), we obtain

S1 =
1

T0

T1 −
1

ρ0T0

P1 , and αSS1 =
1

γ

P1

P0

− ρ1

ρ0

. (1.44a,b)

Hence it follows that

− 1

X ∇P1 − ρ0∇Φ1 − ρ1∇Φ0 = −ρ0∇
(

P1

X ρ0

+ Φ1

)
− P1

X ρ0

∇ρ0 + ρ1∇Φ0

= −ρ0∇
(

P1

X ρ0

+ Φ1

)
− P1

X ρ0

∇ρ0 −
(

1

γ

P1

P0

− αSS1

)
ρ0∇Φ0 from (1.44b)

= −ρ0∇
(

P1

X ρ0

+ Φ1

)
− ρ0αSS1g0 from (1.43) and (1.41).

Thus equation (1.42) can be rewritten in the more compact form

∂tu+u·∇u+
2

Ro
k×u = −∇

(
P1

Xρ0

+ Φ1

)
−αSS1g0−

2

ρ0 Re
∇·(ρ0 S) . (1.45)

In the more general case, when more than one driving mechanism is considered (e.g.
thermal and chemical in the Earth’s core), it can be convenient to introduce a unique
variable in the momentum equation. This can be achieved by introducing a co-
density variable C (see Braginsky & Roberts, 2003), which reduces in our simpler
case to C = −αSS1.

Turning to the entropy equation we have

(ρ0 + ερ1)(T0 + εT1) (∂t(S0 + εS1) + u · ∇(S0 + εS1)) =
1

Re Pr
Δ(T0 + εT1)

− 2XFr

αS∗ Re
(ρ0 + ερ1)S : ε . (1.46)

At order ε

ρ0T0 (∂tS1 + u · ∇S1) =
1

Re Pr
ΔT1 −

2X
αS∗ Re

ρ0 S : ε . (1.47)

Equations (1.39), (1.45), and (1.47) constitute the anelastic system.
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The system governing the slow evolution of the reference state is

∇S0 = 0 , ρ0∇P0 = γP0∇ρ0 , (1.48a,b)

1

X ∇P0 = −ρ0∇Φ0 , ΔΦ0 = ρ0 . (1.48c,d)

This yields the adiabatic temperature profile, ∇T0 = −X∇Φ0 , and is completed
by the equation of state relating P0, ρ0, T0 .

Convection above this reference state is then governed by

∂tu + (u · ∇)u +
2

Ro
k × u = −∇

[
P1

Xρ0

+ Φ1

]
− αSS1g0 −

2

Re ρ0

∇ · (ρ0 S) ,

(1.49a)

∇ · (ρ0u) = 0 , ρ0T0 (∂tS1 + u · ∇S1) =
1

Re Pr
ΔT1 −

2X
αS∗ Re

ρ0 S : ε .

(1.49b,c)
No separate equation is needed for the quantity ∇ [P1/Xρ0 + Φ1] since it acts as a
Lagrange multiplier to satisfy ∇ · (ρ0u) = 0.

Let us conclude this section by stressing that under the approximation discussed
above ΦΩ � Φg, the reference state only depends on the radial coordinate. The
anelastic system can then be introduced as a decomposition of each variable f into
a spherically averaged reference state, f , and a perturbation, f ′, i.e.

f(r, θ, φ, t) = f(r, t) + ε f ′(r, θ, φ, t)

(e.g. Gough, 1969; Latour et al., 1976). This formulation allows one to introduce
a slow evolution of the reference state (not necessarily compatible with the above
expansion).

As discussed at the start of the section, we have derived, under this approximation,
a set of equations in their simplest form. Other important effects, such as turbulent
transport coefficients (expected to be dominant in the solar convection zone) can be
introduced to add further complexity to the models. The effects of compositional
convection –a major ingredient to the Earth’s core dynamics– can also be envisaged.
For a detailed treatment, including both thermal and compositional convection (and
also including the effect of turbulent motions), the reader is refered to Braginsky and
Roberts (1995, 2000).

THE BOUSSINESQ APPROXIMATION

When the region of fluid is thin enough (in a sense to be clarified later) a more
drastic approximation can be introduced, which is refered to as the Boussinesq ap-
proximation. It is often used for thin layers of fluid in the laboratory, but has been
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used as a starting point in understanding natural dynamos (see Chapters 4, 5 and
6). In such thin layers, pressure effects are negligible and the adiabatic temperature
profile, T0, can be assumed to be constant. This allows significant simplifications in
the equations, which we will now discuss.

If X � O(1), i.e. if the size of the system is small compared to the typical depth
of an adiabatic gas (P∗/ρ∗g∗), compressibility of the fluid under its own weight can
safely be neglected.

For all quantities x expanded above in x1 +εx1 [see equations (1.37a–d)], following
Malkus (1964), we now introduce a second expansion in terms of X ,

x0 = x00 + Xx01 , x1 = x10 + Xx11 . (1.50a,b)

System (1.48) at order X−1 reveals

∇P00 = 0 , (1.51)

and it follows that the temperature and density of the reference profile are constant.

System (1.49) at order X−1 gives

∇P10 = 0 , (1.52)

while at order X 0 it yields

∂tu + (u · ∇)u +
2

Ro
k × u = −∇Π − αSS10g00 +

2

Re ρ0

Δu , (1.53a)

∇ · u = 0 , ρ00T00

(
∂S10

∂t
+ u · ∇S10

)
=

1

Re Pr
ΔT10 . (1.53b,c)

All gradient terms have conveniently been written as ∇Π in equation (1.53a), this
term being a Lagrange multiplier to satisfy equation (1.53b). It follows from equa-
tion (1.52) that

S10 =
T10

T00

. (1.54)

It is usual in the Boussinesq formalism to introduce the coefficient of “thermal ex-
pansion” α. It is defined, using dimensional variables, by

δρ

ρ
= α δT , (1.55)

and relates to the previously introduced αS and αP through

α = −1

ρ

(
∂ρ

∂T

)
P

=
αScP

T∗
=

αP

T∗
. (1.56)
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In dimensionless from (for clarity, we introduce here a different symbol) it yields

α′ = αScP = αP . (1.57)

System of equations (1.49) then becomes,

∂tu + (u · ∇)u +
2

Ro
k × u = −∇Π − α′T10g0 +

1

Re
Δu , (1.58a)

∇ · u = 0 , ∂tT10 + u · ∇T10 =
1

Re Pr
ΔT10 . (1.58b,c)

In the Boussinesq approximation the entropy and the temperature are equivalent up
to a scaling factor given by equation (1.54). To recover a more classical dimension-
less formalism, let us assume that a super adiabatic entropy gradient is maintained
accross the system. This gradient provides the natural unit for temperature, while
the velocity scale U∗ can be set to κ/L0.

One can then introduce the Rayleigh number, Ra, and the Ekman number, E, which
are formed as

Ra =
α ΔT g∗ L3

∗
ν κ

, and E =
ν

Ω L2
∗
. (1.59a,b)

Using equation (1.37), one recovers a familiar, and much used, system

∂tu + (u · ∇)u +
2 Pr

E
k × u = −∇Π − Ra Pr T g0 + Pr Δu , (1.60a)

∇ · u = 0 , ∂tT + u · ∇T = ΔT . (1.60b,c)

Finally, it is often useful to decompose the temperature field in two contributions,
which are a steady contribution satisfying the boundary conditions (and balancing an
internal source term, if there is one), and a perturbation with homogeneous boundary
conditions (and governed by a homogeneous equation)

T = Ts + Θ .

Provided ∇Ts×∇Φ = 0 (as will be the case under for a perfectly spherical problem)
the resulting system is

∂tu + (u · ∇)u +
2 Pr

E
k × u = −∇Π − Ra Pr Θg0 + Pr Δu , (1.61a)

∇ · u = 0 , ∂tΘ + u · ∇Ts + u · ∇Θ = ΔΘ . (1.61b,c)

To bring this section to an end, let us stress that since all gradient terms are included
in the ∇Π term, when the magnetic field is included and the Lorentz force is non-
zero, the magnetic pressure term will therefore not enter the dynamical balance.

© 2007 by Université Joseph Fourier



1.1 – NAVIER-STOKES EQUATION 17

This term can produce buoyant effects in regions of localised intense field. Such
magnetic buoyancy is believed to be of particular importance for solar dynamics.
It is possible to construct approximations which retain this dynamical effect while
considering simple incompressible fluids. This is done in a similar manner to how
the thermal buoyancy has been retained here. We refer the reader to Spiegel & Weiss
for such a derivation, which is achieved at the cost of relaxing (1.1c).

1.1.4. BOUNDARY CONDITIONS

When investigating a planet, a star, or a galaxy, it is convenient to consider a bounded
finite volume of space, D, in which the relevant physics are to be investigated. While
the fluid can often be assumed to remain within this volume, the magnetic field on
the other hand cannot easily be artificially confined. The first, and most natural
assumption is to assume that the outside world (i.e. the complementary domain to
the finite volume of interest, cD) consists of vacuum and is insulating. No electric
current can therefore escape the volume, D, and the resulting ∇ × B = 0 in cD,
together with ∇ · B = 0 imply that the field in cD derives from a potential

B = −∇Φ , and ΔΦ = 0 . (1.62a,b)

The above relation on the field in the complementary domain provides the necessary
conditions to compute the field evolution in D once continuous quantities across ∂D
are identified. Equation (1.1c) implies that n · B is continuous across the bound-
ary, while equation (1.1a) implies the continuity of n × E (n is the normal to the
boundary). These can be used to reduce the induction problem to a closed integro–
differential formulation on D (e.g. Iskakov & Dormy, 2004, 2005).

It is important to note that, while this choice of boundary condition is a very natural
one and will in fact be the only one used in this book, some astrophysical bodies
(like the Sun) are bounded by a conducting corona. For such corona, nothing can
balance the Lorentz force in the momentum equation. As a result, the field has to
relax to a state for which the Lorentz force vanishes. Such state is known as a “force-
free” state. Interestingly, the field is then prescribed from the momentum equation
rather than the induction equation. From (∇ × B) × B = 0, one deduces that

∇ × B = αB with (B · ∇) α = 0 , (1.63a,b)

where α is real, and must not be confused with the notation α in mean field theory
(although the α in mean field theory, that is discussed in Section 1.5, relates ∇×B
to B as well, it derives from a different physical reasoning). Unless α is artificially
assumed to be uniform in cD, the resulting problem is nonlinear and very difficult
to address (even determining the necessary conditions on ∂D to determine B in cD
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is not a trivial issue. So far, to the authors knowledge, no dynamo model has been
produced with this type of bounding domain (even in the linear approximation).
Solar models presently rely on the matching to a potential field as expressed by
equation (1.62) (see Chapter 6).

Boundary conditions on thermodynamic quantities are, depending on the problem
are usually of either the Dirichlet type (fixed value) or of the Neumann typed (fixed
flux). Boundary conditions on the fluid flow usually require non-penetration of the
fluid at the boundary which translates to

n · u = 0 . (1.64)

While this condition is sufficient when viscosity is omitted, additional conditions
are needed if viscosity is retained. These usually amount for the configurations in-
vestigated in this book to either “no-slip” (1.65a) or “stress-free” (1.65b) conditions,
namely

n × u = 0 , or n · ∇ (n × u) = 0 . (1.65a,b)

1.2. HOMOGENEOUS DYNAMOS

1.2.1. DISC DYNAMO

Here we introduce the dynamo instability on an apparently for a very simple device:
the “homopolar dynamo” or “disc dynamo”. Consider a conducting disc of radius
r, free to rotate on its axis [see Figure 1.1(a)]. If one places a permanent magnet
under the disc and rotates the disc at the angular velocity Ω, then an electromotive
force will be driven between the axis and the rim of the disc. If a conducting wire
connects the rim of the disc to the axis then an electric current will be driven through
this wire. This setup was originally introduced by Faraday in 1831; it is a dynamo (it
converts kinetic energy to magnetic energy), but it is not a “self-excited dynamo”,
since it relies on a permanent magnet. Introducing the magnetic flux through the
disc Φ = Bπr2, we can quantify this electromotive force, E , by integrating u × B
across the disc. Assuming for simplicity a uniform and vertical field B = Bez one
finds

E =
ΩBr2

2
=

ΦΩ

2π
. (1.66a)

If the permanent magnet is now replaced with a solenoid of self-inductance L [see
Figure 1.1(b)], an instability problem is presented. If the rotation rate is small
enough, the electrical resistance will damp any initial magnetic perturbation. If the
rotation rate is sufficient (in a way we will immediately quantify), then the system
undergoes a “bifurcation” and an initial perturbation of electric currents, I , can be
amplified exponentially by self-excited dynamo action.
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(a) (b)

Figure 1.1 - (a) The original Faraday disc dynamo. (b) The homopolar self excited
dynamo.

Let us introduce the mutual inductance, M , between the solenoid and the disc, which
allows us, using Φ = MI , to write

E =
MΩI

2π
. (1.66b)

Now if R is the electrical resistance of the complete circuit, the governing equation
for the electric currents in the system is

L
dI

dt
+ R I =

MΩI

2π
. (1.67)

It follows that the system is unstable if

Ω > Ωc =
2πR

M
. (1.68)

In reality, the value of Ωc for an experimental setup is too high to be achieved.
Therefore, while this setup offers a simple description of a self-excited dynamo, it
cannot be constructed as such in practice (e.g. Rädler & Rheinhardt, 2002).

It is worth stressing here that this mathematical description of the physical setup is
oversimplified and further developments and refinements will be dicussed later in
the book. Furthermore, we only consider here a linear problem. The currents here
appear to grow indefinitely. This is because the Lorentz force acting on the disc
to slow it down has been neglected. This force is the essence of a third setup that
can also be constructed using such a disc configuration, which is the Barlow wheel.
In this setup, no torque is externally applied to the disc. Instead a battery replaces
the current-meter of Figure 1.1(a), and the interaction between this current and the
externally applied magnetic field causes the disc to rotate.
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1.2.2. CHIRALITY AND GEOMETRY

The simple disc dynamo described in the previous section, of course does not pos-
sess all the features found in fluid dynamos. One property that it does possess is
that of chirality; there is no symmetry between the system and its reflection. The
direction of rotation of the disc compared with the way in which the coil is wound
(i.e. the sign of ΩM ), is of crucial importance. It will be seen that chirality is very
important for the production of large scale magnetic fields by fluid dynamos, though
it is not essential for the production of local small scale fields; this is accomplished
by stretching instead. The disc dynamo has no stretching properties, which on the
face of things would suggest that magnetic energy could not be increased. However
the disc dynamo is not a fluid, and current is constrained to flow in the wires and
through the disc. This corresponds to a highly anisotropic electrical conductivity,
while in a homogeneous fluid dynamo one expects the conductivity to be isotropic,
at least to a first approximation. The key to a successful dynamo is to get the currents
to flow in such a way that the resulting fields reinforce those previously existing -
not a trivial task for homogeneous fluid bodies! In general currents will wish to take
the shortest paths and unless the flow fields are sufficiently complicated they will
simply not be able to produce the correct topology for sustained growth.

In fact it is notable that astrophysical bodies such as the Earth and Sun in which large
scale fields are generated do in fact possess symmetry under reflection and exchange
by rotation of North and South poles. So while local properties of motion in these
bodies are chiral, the net lack of chirality distinguishes them from the disc problem.

1.2.3. BASIC MECHANISMS OF DYNAMO ACTION

The dynamo process is in essence a way of turning mechanical energy into magnetic
energy. To see this we can take the scalar product of the induction equation (1.14)
with B, integrate over some suitable domain and obtain, after some integration by
parts and ignoring all boundary terms:

1

2

d

dt

∫
|B|2dx =

∫
B · (B · ∇u)dx − η

∫
|∇B|2dx , (1.69)

The second term here is negative and represents the conversion of energy into heat
due to Ohmic losses. The first term (due to induction) can be rewritten (in the case
∇ · u = 0) as −

∫
u · [(B · ∇)B] dx and this is just the negative of the work done

by the velocity field against the Lorentz force. Clearly there can be no growth of
magnetic energy, let alone total magnetic flux, unless the induction term is effective.
We can see how induction can act to increase magnetic energy by ignoring the effects
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of diffusion entirely. We are left with the reduced system

∂tB = ∇ × (u × B) . (1.70)

This is formally identical to the vorticity equation for ω = ∇×u in an inviscid fluid,
and we can therefore take over many results about the kinematics of vorticity (but
not, note, of the dynamic aspects, since in MHD we do not have B = ∇ × u!). In
particular, Faraday’s law that the total flux threading a material element is conserved,
is completely equivalent to Kelvin’s circulation theorem, i.e.

∮
C u ·dx =

∫
S ω ·dS is

constant for material curves C spanned by material surfaces S . This has the corollary
that “vortex lines move with the fluid” (Kelvin). For magnetic fields the analogous
“freezing-in” result is called Alfvén’s Theorem. Consider then vortex stretching.
In an extensional flow involving contraction in two directions and expansion in the
third, a material tube of vortex lines aligned with the expanding direction has con-
stant total vorticity at every cross section. Since the cross sectional area is diminish-
ing, the local vorticity must increase, and so since the volume is fixed the integral
of |ω|2 also increases. Exactly the same argument can be applied to magnetic fields,
with the result that such stretching flows can increase magnetic energy. Note, how-
ever that the total magnetic flux is not increased, so this mechanism as it stands is
not able to account for any increases in, for example, dipole moments in conducting
spheres. In addition, in a finite domain stretching must be accompanied by fold-
ing, as in kneading dough, and this second action will in general bring oppositely
directed fields together, where they will cancel due to Ohmic dissipation. This does
not always happen though, as can be seen from the Vainshtein-Zeldovich dynamo
(the Stretch–Twist–Fold, or STF mechanism) leads to the effective doubling of the
energy of a loop of flux, as shown in Figure 1.2. This is the most dramatic ex-
ample of a number of transformations of the space that can lead to net stretching.
More explicit examples of the consequences of folding and stretching are given in
Section 1.6. There are outstanding questions as to whether such folding can exist
throughout a homogeneous fluid; in general some cancellation will occur. In partic-
ular, when fields and flows are two–dimensional there is always too much folding,
cancellation always dominates stretching and fields will decay. A simple example is
provided by the non-dimensional flow field u = (−x, 0, z) (where the timescale has
been based on a typical velocity U0 and a typical length L), with B = (0, 0, B(x, t)).
From (1.14) we can see, introducing the magnetic Reynolds number, Rm = U0L/η,
that B obeys

∂tB − x ∂xB = B + Rm−1 ∂xxB . (1.71)

If B(x, 0) = Re
{
β0 eik0x

}
then

B(x, t) = Re
{
β0 exp

[
t − k2

0(e
2t − 1)/2Rm

]
exp

(
ik0 etx

)}
, (1.72)

so that |B| eventually decays superexponentially. This is due to diffusion acting on
the exponentially increasing gradients caused by folding. In spite of this, however,
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(a) (b)

(c) (d)

B B X

B B

B B

B B

Figure 1.2 - Sketch of the stretch–twist–fold (STF) mechanism. The final magnetic
flux is doubled.

we can have transient growth of magnetic energy for long times ∼ ln(Rm/k2
0). As

Rm → ∞ energy can increase indefinitely. This example is instructive in that it
points up the singular nature of the infinite Rm limit; the limits of large times and
large conductivity cannot be interchanged.

1.2.4. FAST AND SLOW DYNAMOS

An important application of dynamo theory is to astrophysical applications, in which
we need to understand the behaviour of dynamo growth rates when Rm is very
large. When Rm is of order unity, the two intrinsic timescales, associated with the
turnover time and the Ohmic diffusion rate are comparable, but at large Rm the
turnover/advective timescale is much shorter, while the Ohmic time is longer than
any recognisable magnetic process. Thus we ask; can magnetic energy (or magnetic
flux or dipole moment) grow at a rate independent of η as η → 0? This leads to the
distinction between fast and slow dynamos. The subject is treated in much greater
detail in Section 1.6: here we give only a brief outline, concentrating on the problem
of growth of flux at large Rm.

For a slow dynamo growth rates (on the advective timescale) → 0 as Rm → ∞,
while for a fast dynamo growth rates (or at least the lim sup if there are many
modes) do not tend to zero at large Rm. In this case the field appears on all scales as
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I

insulating strips

Figure 1.3 - The segmented Faraday dynamo (Moffatt, 1979). The insulating strips
in the inner part of the disc ensure that the current is radial there.

Rm → ∞, and diffusion can never be neglected. This important point was first made
by Moffatt and Proctor (1985). While as we have seen it is easy to produce an in-
crease in magnetic energy if diffusion is entirely neglected, an increase of magnetic
flux of dipole moment can only occur due to the presence of diffusion (as shown
by Faraday’s Law). This is necessary to get round flux conservation as diffusion
becomes negligible. The Faraday disc dynamo has been discussed in Section 1.2.1.
Here we examine a modification introduced by Moffatt (1979), which illustrates the
role of diffusion in preventing fast dynamo action. This is the segmented Faraday
dynamo (see also the brief discussion in Section 2.8). It is best understood by ref-
erence to Figure 1.3; the difference from the usual single disc dynamo geometry,
as shown in Figure 1.3 is that currents are constrained to move radially on the disc
except near the outer edge.

We can write down simple equations relating current in the wire I , current round the
disc J , the angular velocity Ω and the fluxes through the wire and disc, respectively,
ΦI , ΦJ . We obtain

ΦI = LI + MJ, ΦJ = MI + L′J, RI = ΩΦJ − dΦI

dt
, R′J = −dΦJ

dt
. (1.73)

We seek solutions ∝ ept. As for the usual dynamo, we find growth if ΩM > R. The
growth rate is

p+ =

√
(RL′ + R′L)2 + 4R′(ΩM − R)(LL′ − M 2) − (RL′ + R′L)

2(LL′ − M 2)
. (1.74)

We can see that p+ > 0 for all Ω > R/M but p+ ∼
√

ΩR′ as Ω → ∞. Thus
the growth rate is controlled by diffusion and not exclusively by advection, and in
particular the growth rate tends to zero on the advective timescale Ω−1.
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We shall discuss further aspects of fast and slow dynamo action in realistic flows in
Section 1.3; the whole subject of the fast dynamo problem is treated in much more
detail in Section 1.6.

1.3. NECESSARY CONDITIONS FOR DYNAMO ACTION

1.3.1. DEFINITIONS OF DYNAMO ACTION

In this section, we describe various rigorous results concerning dynamo action. It
is helpful first to give a precise definition of what is meant by dynamo action: the
definition depends on the geometry considered. We can consider either a bounded
conductor surrounded by insulator, or magnetic fields and flows defined in a periodic
box. Many generalisations are possible (for example, one could consider the effects
of an external stationary conductor, as was done by Proctor, 1977a), but the details
complicate the analysis.

Case 1: Finite conductor.
Suppose B is defined in a finite volume D, surrounded (in cD) by an insulator.
In cD we have ∇ × B = 0, with all components of B continuous at ∂D,
because there are no surface currents. We suppose no currents at infinity, so
that |B| ∼ O(|x|−3) as |x| → ∞.

Case 2: Periodic dynamo.
B is defined in a periodic domain D ∈ R

3, with
∫
D B dx = 0.

In each case u satisfies ∇·u = 0, and has time-bounded norm (for Case 2, we choose
a frame so that the mean value of u vanishes. Several different norms can be defined,
for example U ≡ maxD(|u|), S ≡ maxD,i,j(|∂jui|), E1/2 ≡

(∫
D |∇u|2dx

)1/2
, . . ..

In Case 1, we suppose that u = 0 on ∂D (this is not strictly necessary for some of
the bounds but aids the analysis). Then we can define the magnetic energy M =
1
2

∫
|B|2 dx where the integral is over R

3 in Case 1, or over D in Case 2. The usual
requirement for dynamo action is that M does not tend to zero as t → ∞.

1.3.2. NON-NORMALITY OF THE INDUCTION EQUATION

In the next subsections we give several criteria which, if violated, rule out dynamo
action. These are necessary conditions. It is notable that there are no general suf-
ficient conditions known for dynamo action; working dynamos can only be found
by explicit integration of particular flows. This is because the induction equation,
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considered as a parabolic linear operator, is non-normal; when u is independent of
time, the eigenvectors found by looking for solutions ∝ exp(pt) are not orthogonal,
and so even when all eigenvectors p have negative real part, i.e. when we have a
non-dynamo, the magnetic energy can still increase for some time. The condition
that the energy decays is much stronger than that the spectrum is in the left hand half
plane. The situation is analogous to that of the stability of shear flows, for which the
energy stability result of Orr gives a bound on the Reynolds number that is far be-
low observed stability thresholds. A simple example of this effect is provided by the
interaction of a purely zonal flow with a meridional field in a sphere. For large Rm
the zonal field increases more rapidly than the meridional field decays, leading to
transient growth of the magnetic energy, but the meridional field eventually decays
and the whole system runs down.

1.3.3. FLOW VELOCITY BOUNDS

If we nonetheless try to find conditions for the decay of the magnetic energy, we
focus on (1.69), which gives us in Case 1

dM
dt

= P − ηJ , (1.75)

where P and J can take the alternative forms:

P =

∫
D

B · (B · ∇u) dx =

∫
D
(u × B) · (∇ × B) dx , (1.76)

J =

∫
D
|∇ × B|2 dx =

∫
R3

|∇B|2 dx , (1.77)

(for Case 2, we have the same results, but all integrals are taken over D).

In order to construct the proofs we shall need a Poincaré inequality. Defining F =
1
2
J /M, we have F ≥ c−2; c ∝ (

∫
D dx)1/3. For a sphere of radius a, c = a/π,

while for a periodic cube of side a, c = a/2π. The proof of this result can either be
done by the standard methods of variational calculus, or by expressing the magnetic
field in terms of spherical harmonics.

Using the above inequality together with (1.75) in the case that P = 0 (stationary
conductor) we have the result that d(lnM)/dt ≤ −2 η c−2, so that the magnetic
energy decays exponentially at a finite rate. It is not surprising, then that a finite
velocity is needed for dynamo action to be possible. We can find bounds on each of
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the three norms defined above. We have the following bounds on P:

(a) P ≤ U

∫
D
|B · ∇B|dx ≤ U(2M)1/2J 1/2 , Childress (1969) ,

(b) P ≤ S(2M) , Backus (1958) ,

(c) P ≤ E1/2

(∫
D
|B|4dx

)1/2

≤ E1/2c1(2M)1/4J 3/4 , Proctor (1979) ,

where c1 is a dimensionless constant (Proctor, 1979, gives the value 4). Using these
results, we can get three bounds on the exponential growth rate σ = d(lnM)/dt:

(a) 1
2
σ ≤ F1/2(U − η c−1) ,

(b) 1
2
σ ≤ S − η c−2 ,

(c) 1
2
σ ≤ F3/4(c1E

1/2 − η c−1/2) .

So if M is not to tend to zero we must have U > η/c, S > η/c2, E > η2/cc2
1. (The

first result can be proved under the less restrictive assumption u · n = 0 on ∂D.)
Because F has a minimum value we can get upper bounds on σ in cases (a) and (c)
that do not involve F :

(a) 1
2
σ ≤ max

[
(U/c − η c−2),

U2

4η

]
,

(c) 1
2
σ ≤ max

[
(c1E

1/2c−3/2 − η c−2),
27 c4

1 E2

256 η3

]
.

It is notable that none of these bounds involves the kinetic energy K = 1
2

∫
D |u|2dx

of the velocity field. In fact a working dynamo can be found with arbitrarily small
energy. Consider a velocity field u in a sphere of radius R surrounded by stationary
conductor. For a steady dynamo the induction equation is invariant under x → x/R,
u → Ru, K → RK. Thus as R → 0 the necessary energy → 0. The argument can
be extended to the case where the conductor is replaced outside some large radius
by an external insulator.

1.3.4. GEOMETRICAL CONSTRAINTS

These conditions are of two kinds; restrictions on the nature of flows that can give
growing field, and constraints on the types of field that can be sustained by dynamo
action. In the first category, until recently the best result was the toroidal theorem
of Elsasser (1946), Bullard & Gellman (1954) (see also Moffatt, 1978). For Case 1,
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if we multiply equation (1.14) by r ≡ r er and integrate then we obtain (defining
P = B · r, Q = u · r),

∂tP + u · ∇P = B · ∇Q + ηΔP in D , (1.78)

with ΔP = 0 in cD, and P, ∂P/∂r continuous on ∂D.

If ∇ · u = 0 , we can separate u into toroidal and poloidal parts uT , uP (see Ap-
pendix B), where

u = uT + uP ≡ ∇ × (φ r) + ∇ × ∇ × (ψ r) . (1.79)

It follows that Q = L2ψ, where L2 is the angular momentum operator, defined as

L2 = (r · ∇)2 − r2Δ . (1.80)

A similar decomposition can be made for B, with

BT = ∇ × (T r) , BP = ∇ × ∇ × (S r) , with P = L2S . (1.81a,b,c)

If therefore the velocity field is toroidal, ψ = 0 and so Q also vanishes. Then
equation (1.78) reduces to a sourceless diffusion-type equation for P , so that

1

2

d

dt

∫
D

P 2dx = −η

∫
R3

|∇P |2dx < −η c−2

∫
D

P 2dx ⇒ |P | → 0 . (1.82)

Once |P | and so |BP | becomes negligible the equation for the toroidal part of the
induction equation can also be simplified. Now u, B are both toroidal, and

∇ × (u × BT ) = ∇ × [−r(u · ∇T )] . (1.83)

After “uncurling” (integrating and setting the arbitrary function of r that arises to
zero without loss of generality), we obtain

∂tT + u · ∇T = ηΔT , with T = 0 on ∂D . (1.84)

Apart from the boundary conditions this is the same equation as satisfied by P , and
we can show by similar means that

∫
D T 2dx → 0 (exponentially) also. While this

result does not rule out a transient increase in the magnetic energy of BT , which
depends upon mean square gradients of T , it can be shown that if the magnetic
energy does not tend to zero then F must increase without bound, and so eventually
Childress’ result above will be violated, giving a contradiction. Thus a dynamo is
impossible.

A similar result holds in cartesian coordinates (Case 2), when u · z = 0, then

∂tBz + u · ∇Bz = B · ∇uz + ηΔBz , (1.85)
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and we can apply exactly analogous reasoning (Zeldovich, 1957).

Busse (1975a) used equation (1.78) when Q �= 0 to obtain a bound on the ratio of
toroidal and poloidal field energies. We have

1

2

d

dt

∫
D

P 2dx = −
∫
D

QB · ∇Pdx − η

∫
R3

|∇P |2dx

≤ max
D

Q

(
2M · 2

∫
R3

|BP |2 dx

)1/2

− 2η

∫
R3

|BP |2 dx

where the inequality
∫

R3 |BP |2dx ≤ 1
2

∫
R3 |∇P |2dx has been used (see, for exam-

ple, Proctor, 2004). Then we have the result that

max
D

Q ≥ η

(
1

M

∫
R3

|BP |2 dx

)1/2

. (1.86)

Though this result may be useful in interpreting geomagnetic data, it is not of course
an anti–dynamo theorem. Nonetheless it turns out that (as might be expected) dy-
namo action can be ruled out if the poloidal flow is sufficiently weak for any given
toroidal flow. In fact it is possible to find inequalities for time derivatives of P 2 and
T 2, namely (choosing some constant μ > 0)

1

2

d

dt

(∫
D
(P 2 + μT 2)dx

)
≤

(
aUP√

2
− η

)
(P2 + μT 2)

+
[
a2UP +

μ

2
(UT + UP )

]
PT , (1.87)

where P2 =
∫

R3 |∇P |2dx, T 2 =
∫
D |∇T |2dx, and UP , UT are the maxima of |uP |,

|uT | respectively in D. For an appropriate choice of μ, we can show that the best
possible condition under which the left hand side is negative definite is

a2UP (UT + UP ) − 2

(
η − aUP√

2

)2

< 0 or a2UPUT + 2
√

2ηaUP < 2η2

(1.88a,b)
(Proctor, 2004). Poincaré inequalities may be used to show that the integrals of both
P 2 and T 2 decay exponentially, and this implies eventual decay of the magnetic
energy as argued above. The result, expressions (1.88a,b), does not rule out dynamo
action when the velocity field u is purely poloidal; and indeed there are examples in
the literature of dynamos with purely poloidal velocity fields. A classic example is
provided by the twin-torus dynamo of Gailitis (Gailitis, 1970), see Figure 1.4.

As regards constraints on the field, the main result is Cowling’s Theorem (Cowling,
1934): An axisymmetric magnetic field cannot be maintained by dynamo action. It
should be noted that if B is axisymmetric then so is u but the converse is not true,
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B1 B1

B2 B2

B2 B2

B1 B1
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� = 0
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B1 B1

B2 B2

B2 B2

B1 B1

F2

F1

� = 0

(b)

Figure 1.4 - The poloidal dynamo of Gailitis (after Gailitis 1970). The flow is
axisymmetric, while the magnetic field is proportional to eiφ. Two different parities
of solution are shown. Suffix 1 refers to fields generated by the lower ring, suffix 2
those due to the upper ring. For more details see e.g. Fearn et al. (1988)

and the dynamo of Gailitis (1970) above provides an example of an axisymmetric
flow field which acts as a dynamo for non-axisymmetric fields. There are several
proofs of this in various cases. We first follow the proof of Braginsky (1964a). We
again assume ∇ · u = 0, and that the conducting region D is spherical. Since
B,u are axisymmetric, we can separate the zonal and meridional parts of (1.14) by
writing [in polar coordinates (s, φ, z)];

B = Beφ + ∇ × (Aeφ) = B eφ + BP , u = uP + U eφ . (1.89a,b)

Since there are no imposed zonal currents, we get

∂

∂t
A +

1

s
uP · ∇(sA) =

1

Rm

(
Δ − 1

s2

)
A , (1.90a)

∂

∂t
B + suP · ∇

(
B

s

)
= sBP · ∇

(
U

s

)
+

1

Rm

(
Δ − 1

s2

)
B . (1.90b)

Further simplification ensues if we write A = χ/s, B = ψs, U = Ωs. Then we
obtain the alternative system

∂tχ + uP · ∇χ = η

(
Δ − 2

s

∂

∂s

)
χ , (1.91a)

∂tψ + uP · ∇ψ = BP · ∇Ω + η

(
Δ +

2

s

∂

∂s

)
ψ , (1.91b)

with (Δ−(2/s)∂s)χ = ψ = 0 in cD and χ ∼ O(|x|−1) as |x| → ∞. It is notable that
the toroidal field does not appear in the equation for χ. The analysis now proceeds
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in a similar manner to that for the toroidal theorem. We form the poloidal “energy
equation”

1

2

d

dt

∫
D

χ2dx = η

∫
D

χ

(
Δ − 2

s

∂

∂s

)
χdx = −η

∫
R3

|∇χ|2dx ≤ −η c2
3

∫
D

χ2dx .

(1.92)
It is then clear that χ2 → 0, and so by arguments used in the previous subsection,
eventually the poloidal field will decay also. When χ is negligible, we can form a
similar relation for ψ and show similarly that

1

2

d

dt

∫
D

ψ2dx = η

∫
D

ψ

(
Δ +

2

s

∂

∂s

)
ψ dx

= −η

(∫
D
|∇ψ|2dx + 2π

∫ a

−a

ψ(0, z)2 dz

)
,

(1.93)

and so ψ2 → 0 also. We can prove very similar results for fields (and so flows) that
are independent of z.

There are other types of proofs of Cowling’s theorem, which allow us to generalise
the problem to permit η to depend on position. They show the impossibility of the
maintenance of a steady magnetic field against Ohmic decay when there is a neutral
curve on which the meridional field vanishes at an O-type neutral point. Suppose
that this is at X, and consider a small meridional circle Sε centred at X, boundary
Cε, radius ε, with Bε ≡ (2πε)−1

∮
Cε

|BP |dx,

(max
D

|u|)BεSε ≥
∫

Sε
(uP × BP ) · dx =

∫
Sε

η(x)∇ × BP · dx ∼ 2πεBεη(X) .

(1.94)
This leads to a contradiction as Sε ∼ ε2. The neutral ring argument, while in some
sense more general than the Braginsky proof in that the field does not have to be
exactly axisymmetric, is more limited in other ways, since the result of the proof is to
rule out steady fields (for steady flows) and so has nothing to say about exponential
decay. Fuller details are given in Moffatt (1978) and Fearn et al. (1988).

When the flow is not incompressible useful results are harder to find. The equation
for χ is still correct. Since χ(0, z) = 0 and χ → 0 as |x| → ∞, there must exist
a positive maximum of χ, at X(t) where ∇χ = 0, Δχ ≤ 0. This rules out a
growing dynamo with a poloidal field. Hide & Palmer (1982) have argued that if
Δχ(X) = 0 for all time then χ becomes non-differentiable near X and so B0 →
0. The arguments used are appealing but are hard to formulate rigorously. They
have been criticised by Ivers & James (1984). These authors have used maximum
principles to show that both poloidal and toroidal fields decay exponentially, but the
bounds for the decay rates so far found are not useful, in that the associated decay
times are much longer than that of any astrophysical body. The question of how far
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a properly selected compressible flow in a sphere can reduce the Ohmic decay rate
for an axisymmetric field remains partially open.

1.4. STEADY AND TIME-DEPENDENT VELOCITIES

In this short section, we discuss the differences between the dynamo properties of
steady and time-dependent flow fields. This is necessary because so much of our
intuition on the efficacy of dynamo action is based on thinking about steady flows,
and these can be misleading in the general case.

1.4.1. TWO SIMPLE EXAMPLES

Smooth, steady flows u are not usually efficient as dynamos at large Rm, because
there is not enough stretching. In particular, smooth axisymmetric or 2D flows can-
not be fast dynamos if they are steady, since there is then no exponential stretching of
material lines (the relation between stretching properties of the flow and growth rates
at large Rm has been discussed earlier, and will be treated in much more detail in
the following). On the other hand time-dependent flows can be very efficient as dy-
namos, even if they have a very simple Eulerian form. As an example consider two
related flows, the so-called [G.O.] Roberts (Roberts, 1970) and Galloway–Proctor
(GP) (Galloway & Proctor, 1992) flows

Roberts flow: u(x, y) ∝ ∇ × [ψ(x, y) ez] + γ ψ(x, y) ez ,

ψ = sin x sin y ; (1.95)
u(x, y, t) ∝ ∇ × [ψ(x, y, t) ez] + γ ψ(x, y, t) ez ,

ψ = sin(y + ε sin ωt) + cos(x + ε cos ωt) . (1.96)
GP-flow:

The Roberts flow has three components, but depends only on x and y. It has a
fixed cellular pattern; there is no stretching except at the cell corners. The GP-
flow has a very similar cellular structure in the Eulerian flow, but the cellular pat-
tern rotates. The consequences for the stretching properties are profound; there is
stretching (positive Liapunov exponent) almost everywhere (see Figure 1.5). We
can find dynamo action for both these flows by looking for fields of the form B =

Re
{
B̃(x, y, t)ei k x

}
. Then the growth rate (for the GP-flow the average growth rate

over one time period of the flow) depends on Rm and k.

For the Roberts flow the optimum growth rate occurs at large wavenumber2 k for

2 The scale k−1, though small compared to the cell size, is long compared to the thin boundary
layer scale Rm−1/2 for field near stagnation points.
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(a) (b)

Figure 1.5 - Chaos in the GP-flow at time t ≈ 20. (a) Finite-time Liapunov expo-
nents (courtesy of D.H. Hughes) for ω = 1, ε = 1, showing there is exponential
stretching almost everywhere. (b) Normal field Bz (courtesy of F. Cattaneo). Note
the large regions of multiply folded field. ( See colour insert.)

Rm � 1, and in fact k ∼ (Rm1/2/ ln Rm). As Rm → ∞ the optimum growth rate
is ∼ O(ln(ln Rm)/ ln Rm), see Figure 1.6. So this flow is not (quite) a fast dynamo.

The GP-flow is completely different. The growth rate is O(1) for large Rm, and
the optimum wavenumber also O(1). Here the flow is chaotic, and though there
are thin flux structures, chaotic regions near the stagnation points do not scale with
Rm. The choice of k for optimum growth is presumably related to the widths of
these structures. Time dependent flows of this type have proved a fertile ground for
extensive numerical simulation of fast dynamo properties.

1.4.2. PULSED FLOWS

Another important aspect of time-dependent flows is that many restrictions that
would prevent dynamo action for the instantaneous flow field do not apply when the
flow is time dependent. This is associated with the non-normality of the induction
equation, as discussed above. As a particular example we show how the Toroidal
and Zeldovich theorems can be got round for time-dependent flows. Consider the
pulsed Beltrami flow (Soward, 1993).

u =

{
(0, sin x, cos x) (0 ≤ t ≤ τ)
(sin y, 0, cos y) (τ ≤ t ≤ 2τ), etc.

(1.97)

This is a planar flow at all but isolated discrete times, but during each interval τ we
can have transient growth, and this can lead to dynamo action. The development is
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Figure 1.6 - Growth
rates for the Roberts
and GP flows, as
functions of Rm and
k. Top figure shows
the Roberts flow,
with peak growth
rates decreasing at
large Rm, and the
critical k increasing.
Bottom figure shows
the same data for
the GP flow with
ε = ω = 1. Note
the convergence of
the growth rate and
critical wavenumber
for large Rm.
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most easily seen when we set η = 0 (for small η the results are almost the same as
long as τ is not too large). In the interval (0 ≤ t ≤ τ) consider the horizontally
averaged field B ≡ Re

{
B̃H exp(ikz)

}
, then

BH(τ) = J0(kτ)BH(0) − iτJ1(kτ)Bx(0) ey , (1.98)

which can be large for large τ . If we add (small) diffusion, we still get growth,
provided τ is much less than the diffusion time. Then the second pulse can refold
and stretch the field and give further enhancement. A more complicated version of
this kind of flow is one that arises in thermal convection, where there is a homoclinic
connection between two different planar flows. In this case the flow is not a dynamo,
because the interval between switching of the flows tends to infinity. The addition
of noise to the system, however, will render the switching time finite and can induce
instability. For further details see Gog et al. (1999).
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(a) (b)

(c) (d)
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Figure 1.7 - The cyclonic event mechanism as envisaged by Parker (after Roberts,
1994). The uniform field in (a) is pulled up in (b), twisted in (c), and then reconnects
to form a field loop with a normal component (and so EMF) anti-parallel to the
original field (d).

1.5. TWO–SCALE DYNAMOS

1.5.1. THE TWO–SCALE CONCEPT AND PARKER’S MODEL

The dynamo flows we have already met: Roberts, GP and pulsed flows and exten-
sions to 3D flows such as the ABC model (see Section 1.6, and Childress & Gilbert
1995) are small scale dynamos. The magnetic field has scales comparable to that of
u. But if B exists on two distinct scales then dynamo action can be easily verified.
Perhaps the simplest model is that of Parker (1955). Suppose that small scale “cy-
clonic events” act on a uniform field. If the velocity of these small-scale motions
has non-zero helicity, i.e. u ·∇×u �= 0, then the field is twisted by the motion as in
Figure 1.7. By Ampère’s Law (1.3) there is generated an electromotive force (EMF)
parallel to the original field. The sign of this EMF is opposite to the helicity for
short-lived events. However for longer lived events there is not in general any such
clear correlation. If these helical motions are distributed isotropically then any EMF
perpendicular to the field will cancel out when an average is taken over all events.
When this new EMF is incorporated, we get an extra term ∇ × αB on the r.h.s.
of equation (1.14); this new term is called the α–effect. An extended discussion
including nonlinear effects is given in Section 2.7 and Chapter 6.

Parker’s model of the solar magnetic field supposes that the large scale field is ax-
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isymmetric. The crucial role of the α–effect is to sustain poloidal from toroidal field.
The same mechanism is also capable of sustaining toroidal from poloidal field, but
is ignored in his model in favour of the much more effective role of zonal shears.
We then obtain the model system

∂tA +
1

s
uP · ∇(sA) = αB +

1

Rm

(
Δ − 1

s2

)
A , (1.99a)

∂tB + suP · ∇
(

B

s

)
= [∇ × (α∇ × BP )]

+ sBP · ∇
(

U

s

)
+

1

Rm

(
Δ − 1

s2

)
B . (1.99b)

We discuss solutions of this equation below when we have looked at a more system-
atic derivation.

1.5.2. MEAN FIELD ELECTRODYNAMICS

We now suppose formally that the magnetic and velocity fields exist on a small scale
� and a large scale L, and/or on short and long timescales. We may then define some
average over the short scales (denoted by · · ·) and write B = B + B′, u = u + u′,
etc. Then, taking the average,

∂tB = ∇ × E + ∇ × (u × B) − ∇ × (η∇ × B) , (1.100)

where E ≡ u′ × B′.

In order to calculate E we need to find B′, whose equation is

∂tB
′ = ∇ × (u × B′) + ∇ × (u′ × B)

+ ∇ × (u′ × B′ − u′ × B′) − ∇ × (η∇ × B′) . (1.101)

This equation can only be solved in special cases, but we can make some general
remarks about the nature of E . Clearly, for fixed u′, B′ depends linearly on B and
so E is a linear functional of B. Assuming the simplest possible local relation, we
obtain the expression

E i = αijBj − βijk ∂jBk + . . . (1.102)

αij is a pseudo-tensor; the symmetric part is non-zero only if the statistics of u lack
mirror-symmetry. The anti-symmetric part, on the other hand, acts like a velocity
and because of this it can only be non-zero if the statistics lack homogeneity, or if
there is anisotropy combined with broken reflection symmetry. If we suppose that
the statistics of u′ are isotropic but not mirror-symmetric, then αij = αδij .
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We can relate the pseudo-scalar α to the helicity of the small-scale flow. Both arise
from broken mirror-symmetry, and we can give explicit relations in limiting cases.

We can similarly simplify the second term in the expansion for E , for in the isotropic
case βijk = βεijk, which can be identified as a “turbulent magnetic diffusivity”.

All the foregoing assumes that B′ owes its existence entirely to B. In this case, in
particular, the value of α can be determined simply by making B uniform, in which
case E i is exactly αijBj . However, as we have already seen, when Rm is large
enough there is a possibility, indeed a likelihood that a small-scale field can exist
even when B = 0. It is hard to see how to interpret the α–effect in this situation
since any “mean-field” effect has to exist on top of an already equilibrated small-
scale field. The problem is then intrinsically nonlinear and so beyond the scope of
this section, though it will be considered in the next chapter.

Supposing that indeed E owes its existence to B, we can see that the α–effect can
lead to dynamo action. Consider (writing η + β = η′)

∂tB = ∇ × (αB) − ∇ × (η′∇ × B) . (1.103)

If α, β are uniform, we get solutions of form Re
{
B̂ exp(ik · x + pt)

}
, with (p +

η′k2)2 = α2k2, so p+ > 0 for all sufficiently small k. It can thus be seen that mean-
field dynamo action is inevitable on all sufficiently large scales, provided only that
α �= 0.

The α tensor will take more general forms with lower symmetry of flow statistics.
In a sphere, when there are two preferred directions, namely the rotation Ω and the
radial vector r, we will get the more general form

E = α1(Ω · r)B + α2r(Ω · B) + α3Ω(r · B) + . . . (1.104)

Note that both rotation and a preferred direction would seem necessary for an α–
effect.

A detailed discussion of possible forms of E in various cases is given by Krause &
Rädler (1980).

As explained above it is hard to calculate α in the general case. There are two special
cases in which analytical progress can be made:

(a) If Rm, based on the small length scale �, is very small, then there is no small-
scale dynamo. We calculate α by approximating the equation for B′ by

0 = B · ∇u′ + ηΔB′ , (1.105)

with B uniform. If we consider, as an example, u′ in the simple Fourier form ∝
Re

{
eik·x} then we have B′

i = iBjkju
′
i/ηk2 so

E i = αij Bj = i εipq kj u′∗
p u′

q Bj/ηk2 . (1.106)
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If we choose coordinates in which k = (0, 0, k) then E i = αijBj where αij =
αδi3δj3 and αηk2 = −εijkkju′∗

i u′
k. The latter quantity is just the helicity, and so as

predicted from Parker’s ansatz we see that α has the opposite sign to the helicity.
Adding together many modes of this type, we can reproduce α due to any velocity
field.

(b) The “short-sudden” approximation. This is used when the small-scale Rm is
large, and thus is harder to justify. In general the fluctuating field B′ will be much
larger than the mean field, and so extra assumptions have to be made to simplify
the equations. We suppose that the fluctuating velocity field, and so the fluctuating
magnetic field, becomes decorrelated on a time τc short enough that the correlated
part of B′ is again small compared to B. We ignore diffusion. Then ∂tB

′ ≈ B ·∇u′.
This can be solved to give B′

i ≈ τcB · ∇u′
i, so in the isotropic case

α = −τc

3
u′ · ∇ × u′ . (1.107)

Again we see that α is anticorrelated with helicity.

The approximations involved in both these limits essentially ignore the self-interaction
of u′ and B′ in the B′ equation. The equation becomes intractable when these terms
are not ignored, and so apart from these extreme cases it is hard to give useful re-
sults. However there is one result available without approximation in Gruzinov &
Diamond (1994). If we suppose the fields and flow statistically steady with uniform
imposed field B (and periodic boundary conditions for simplicity), and, using the
vector potential introduced in (1.17), write B′ = ∇ × A′ , we then have

∂tA
′ = −∇Φ + u × B′ + u′ × B

+ u′ × B′ − u′ × B′ − η∇ × B′ , (1.108)

so (ignoring boundary terms that arise from integration by parts)

0 = 1
2

(
B′ · ∂tA′ + A′ · ∂tB′

)
= −B · E − ηB′ · ∇ × B′ . (1.109)

This holds without approximation if boundary terms are ignored. Thus in the isotropic
case

α|B|2 = −η

3
B′ · ∇ × B′ . (1.110)

This result gives some guidance about the behaviour of α as the small-scale Rm
increases. In particular, it shows that diffusion must be included in any proper model
of α. If α is independent of η at large Rm, leading to a fast mean field dynamo, and
we posit that |B′| ∼ ηa|B|, |∇ × B′| ∼ η−1/2|B′|, and is intermittent with a filling
factor ∼ ηb, then 2a + b = −1/2. Possible solutions include b = 1/2, a = −1/2
giving sheet-like fields, while if the fields are primarily tubes rather than sheets we
might expect a = −1, so b = 3/2.
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1.5.3. MEAN FIELD MODELS

If the α–effect is accepted as a model of the effects of small-scale flows on the
large scale field, then Cowling’s theorem does not apply, since now toroidal field
can sustain poloidal field, and so we can investigate axisymmetric models. Physical
considerations (the role of the Coriolis force in inducing helicity) suggest that in
a rotating body such as the Earth or the Sun α is odd about the equator. Similar
considerations suggest that the zonal flow U should be even, so we can get two
types of field structure: (i) Dipole: where B is odd about the equator, and A is even.
(ii) Quadrupole; A is odd, B is even. Examples of fields of the two types are shown
in Figure 1.9.

Most models are one of two types: (i) “α2”, with U neglected. This has been used
to model stationary e.g. planetary dynamos; (ii) “αω” in which the α term in (1.99b)
is neglected, as in the Parker model. α2–models typically give steady dynamos
(real growth rates) while αω–models usually give cyclic dynamos (complex growth
rates). We can understand the latter in terms of dynamo waves. We use cartesian
geometry; let

A = A(x, t) , B = B(x, t) , Bp · ∇U ∼ ω∂xA , (1.111a,b,c)

where x is a variable corresponding to latitude [the term (1.111c) is referred to as the
ω–effect]. Substituting into (1.99), and modelling radial derivatives with a constant
damping term, we obtain the simplified system [compare to Equation (6.1a,b) in
Chapter 6].

∂tA = αB + η
(
∂xxA − K2A

)
, ∂tB = ω ∂xA + η

(
∂xxB − K2B

)
. (1.112a,b)

This has travelling wave solutions with A,B ∝ exp [ik(x − ct)] when

αω = ±2η2(k2 + K2)2/k , c = −αω/[2η(k2 + K2)] . (1.113)

Note that the modulus of the dynamo number, D = αω/η2K3, takes a minimum
value 16/3

√
3 when k = K/

√
3, also note the definite sign of the wave speed c

which depends on the sign of D.

In a spherical geometry, αω–models can be used to give models of the solar cycle
(butterfly diagram) by identifying large B with regions of sunspot eruption. Forms
of α, U and any meridional velocity are prescribed, and the equations solved numer-
ically as an eigenvalue problem to obtain marginal (periodic solutions). A particu-
larly comprehensive study was carried out by Roberts (1972). While these kinematic
studies are now overshadowed by the dynamical studies reported on later, it is in-
teresting to note that travelling waves of activity, similar to the Parker waves, can
be seen propagating latitudinally. The direction of propagation depends on the sign
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Figure 1.8 - Oscillatory Dipolar solutions for an αω–dynamo (from Roberts, 1972).

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

Figure 1.9 - As above, but quadrupolar solutions.
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Figure 1.10 - Real (solid lines) and imaginary (dotted lines) parts of the growth rate
for typical αω–dynamos (from Roberts, 1972). Unstable regions are shaded. The
x–axis is reversed in the lower figure. Note the similarity between the figures, as
suggested in Proctor (1977b).

of the dynamo number, and since on the Sun the waves move towards the equator,
we can make some deductions about the dynamics leading to α. The associated fre-
quency of oscillation also emerges from the calculation and is comparable with the
turbulent diffusion time.

There is an interesting near symmetry, associated with the adjoint dynamo problem,
between dipole (quadrupole) modes with α,u, and quadrupole (dipole) modes with
α,−u (Proctor, 1977b). This is illustrated in Figure 1.10, which shows growth
rates for a particular dynamo model. The figures for the different parities are very
similar, though the x–axis, measuring the dynamo number is reversed in the right-
hand figure.

We can relate these results to the well known butterfly diagram of the solar cycle
(shown in Figure 6.3, page 284 and discussed in Section 6.1). If we identify the
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sites of sunspot activity with maxima of B, (since we believe that sunspots are man-
ifestations of large toroidal fields through the magnetic buoyancy instability), then
the equatorward propagation of the disturbances will lead to a picture like the obser-
vations.

These global models of dynamo action have been superseded by models in which the
shear is concentrated just below the convective zone of the sun, and so the α–effect
is separated spatially from the shear. This “interface model” (Parker, 1993), which
also leads to dynamo waves, will be discussed in detail along with its dynamical
consequences in Chapter 6.

1.6. LARGE MAGNETIC REYNOLDS NUMBERS

Let us now turn to the evolution of magnetic fields under the induction equation
at large magnetic Reynolds number, as explained in Section 1.2.4. We will begin
by giving a formal definition, before discussing the motivation for such studies and
presenting various examples. For further information and more references than can
easily be provided here see the reviews Childress (1992), Bayly (1994), Soward
(1994), Childress & Gilbert (1995) and Gilbert (2003).

Suppose we have a given incompressible flow u with a typical length scale L and ve-
locity scale U , and the magnetic diffusivity is η. Then after non-dimensionalisation
using these scales, the induction equation (1.16) becomes

∂tB + u · ∇B = B · ∇u + εΔB , (1.114a)

where ε−1 ≡ Rm = UL/η is the magnetic Reynolds number, and

∇ · B = 0 , ∇ · u = 0 . (1.114b,c)

For a given flow u and an ε > 0, dynamo action may take place, the fastest grow-
ing magnetic field mode having an exponential growth rate γ(ε); for example for a
steady flow

B(x, t) ∝ b(x)eσt, γ = Re {σ} . (1.115)

The flow u is a fast dynamo if the fast dynamo exponent

γ0 ≡ lim
ε→0

γ(ε) (1.116)

is positive; otherwise it is a slow dynamo. For a fast dynamo, magnetic field growth
occurs on the turnover time-scale of the underlying flow u (on which we first non-
dimensionalised), independently of molecular diffusion. A slow dynamo operates
on a slower, diffusion-limited time-scale, as we shall see in some examples below.

© 2007 by Université Joseph Fourier



42 Andrew GILBERT

Why study fast dynamos? Before answering this question, it is best to widen the
scope of our enquiry: our interest is in dynamo mechanisms (fast and slow) at large
Rm, the structure of magnetic fields, and the saturation of dynamo instabilities (in
which case (1.114a) must be supplemented by an equation for u). Mathematically,
the limit Rm → ∞ or ε → 0 in equation (1.114a) is a singular limit as ε multiplies
the highest derivative, and so this requires careful treatment by numerical codes, or
by asymptotic means. Taking this limit allows a clear subdivision of dynamos and
unstable magnetic modes into different families, as we shall see. This classification
can be useful even if Rm is not particularly large in an application; however in
many astrophysical applications Rm is very large, and dynamo processes do appear
to operate on fast time-scales; for example in the Sun Rm is of the order of 108 and
the magnetic field oscillates on the fast, 11-year solar cycle.

Finally, developing mathematical tools to cope with fast dynamos is a considerable
challenge with wider application, for example to vorticity and passive scalar trans-
port in complex flows (e.g. Reyl, Antonsen & Ott, 1998; Fereday et al. 2002). The
induction equation (1.114a) is challenging because the behaviours as ε → 0 and
for ε = 0 are markedly different at large times. If one simply sets ε = 0, then the
induction equation corresponds to advecting a vector field B in the given flow u,
field lines being frozen in the fluid. The field will gain finer and finer scales, and the
magnetic energy will grow because of field stretching. Because of this reduction of
scale, there are no well-behaved eigenfunctions for a general flow in the case ε = 0
(Moffatt & Proctor, 1985). Now suppose diffusion is introduced: this can have very
dramatic effects because of the fine scales in the field. For example for a typical pla-
nar flow u(x, y, t) = (u1, u2, 0), the magnetic energy grows indefinitely for ε = 0,
but for any ε > 0 it eventually decays, in keeping with the anti–dynamo theorem for
planar flows discussed in Section 1.3.4.

In this short review we will consider examples of slow and fast dynamos in flows
and mappings, but only make passing reference to issues of dynamo saturation; these
will be taken up in Chapter 2.

1.6.1. SLOW DYNAMOS IN FLOWS

Perhaps the simplest example of a slow dynamo is the Ponomarenko dynamo (e.g.
Ponomarenko, 1973; Gilbert, 1988; Ruzmaikin, Sokoloff & Shukurov, 1988). In
cylindrical polar coordinates (r, θ, z),

u = rΩ(r) eθ + U(r) ez ; (1.117)

this is a swirling helical flow, depending only on radius r. Here we focus on the case
of a smooth flow, although Ponomarenko’s original paper had piecewise constant U
and Ω. Related flows were studied by Lortz (1968).
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Figure 1.11 - Magnetic field
in the Ponomarenko dynamo at
large magnetic Reynolds num-
ber Rm = ε−1 forms spiralling
tubes of field localised near the
resonant stream surface (from
Gilbert, 2003).
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We may consider a magnetic mode B = b(r) exp [imθ + ikz + σt], classified by
wavenumbers m and k. In this case the induction equation (1.114a) for br and bθ

becomes

[σ + i m Ω(r) + i k U(r)] br = ε
[
(Δm − r−2) br − 2 i mr−2bθ

]
, (1.118a)

[σ + i m Ω(r) + i k U(r)] bθ = r Ω′(r) br + ε
[
(Δm − r−2) bθ + 2 i mr−2br

]
.

(1.118b)

We can drop the bz equation as bz can be reconstructed from the condition ∇·B = 0.
The basic mechanism can be seen in these two equations, and can be described
as of αω–type. The stretching of radial field by the gradient of angular velocity
Ω′(r) generates bθ field in equation (1.118b) (an ω–effect), while diffusion of bθ field
in curved geometry can generate radial field by the last term in (1.118a) (broadly
speaking, an α–effect).

To obtain formulae for growth rates at small ε, we rescale, so as to capture the fastest
growing modes, setting

m = ε−1/3M , k = ε−1/3K , r = a + ε1/3s . (1.119a,b,c)

Here we are seeking a mode localised at a radius a (whose significance we will
discover shortly) in the interior of the fluid. We scale the growth rate as

σ = ε−1/3σ0 + σ1 + ε1/3σ2 + · · · , (1.120)
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and for the field, set

br = ε1/3br0(s) + · · · , bθ = bθ0(s) + · · · , (1.121a,b)

These expansions are then to be substituted into (1.118a,b) and the flow field (1.117)
also Taylor-expanded about r = a in powers of s. When this is done, corresponding
powers of ε are equated, to give at the leading two orders:

σ0 + i M Ω(a) + i K U(a) = 0 , (1.122a)

i M Ω′(a) + i K U ′(a) = 0 , σ1 = 0 . (1.122b,c)

The first simply fixes σ0 as purely imaginary, advection of the magnetic field mode
by the flow at radius a. The second condition implies that a mode with given (m, k)
tends to localise at the radius a where the shear of the flow is aligned with field
lines, assuming such a radius exists; if it does not, then we may expect the mode to
localise at a boundary.

At the next order we obtain from (1.118) coupled parabolic cylinder equations,
which may be written in the form

(c0 + i c2 s2 − ∂2
s ) br0 = −2 i M a−2 bθ0 , (1.123a)

(c0 + i c2 s2 − ∂2
s ) bθ0 = a Ω′(a) br0 , (1.123b)

where c0 = σ2 + M 2/a2 + K2 and 2c2 = MΩ′′(a) + KU ′′(a). These coupled
differential equations can be rewritten as

P+P−br0 = 0 , (1.124a)

with P± ≡ (c0 ± d + i c2 s2 − ∂2
s ), d ≡ (−2 i M Ω′(a)/a)1/2 . (1.124b,c)

The parabolic cylinder operators P+ and P− commute and so the solution for br0 is
a linear combination of solutions to the two equations P±br0 = 0. Putting these into
canonical form gives [

∂2
σ − (1

4
σ2 + c±)

]
br0 = 0 , (1.125)

with σ = s(4 i c2)
1/4 , c± = (c0 ± d)/(4 i c2)

1/2 , (1.126a,b)

and solutions that decay for s → ±∞ exist only if c± = −j − 1
2

for j = 0, 1, 2, . . ..
This gives eigenvalues of the original dynamo problem.

Finally returning to the original variables gives leading order growth rates,

γ ≡ Re σ � ∓
√

ε|mΩ′(a)|/a − (j + 1
2
)
√

ε|mΩ′′(a) + kU ′′(a) − ε(m2/a2 + k2) .
(1.127)

This formula was derived for m, k = O(ε−1/3), but is in fact valid for all m, k. The
fastest growing modes have scales m, k = O(ε−1/3) and γ = O(ε1/3), and so this
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provides a slow dynamo. The resulting magnetic fields have spiralling tubes along
which the field is approximately directed; for example, an m = 2 mode is illustrated
schematically in Figure 1.11.

An important feature of the formula (1.127) is that the first two terms scale in pre-
cisely the same way with m (and k) and ε, while the last term can always be made
subdominant at small ε by taking m (and k) small enough. Taking the upper sign,
and j = 0, for a dynamo to occur at large Rm for some mode (m, k) it follows that
the first, positive term must dominate the second, negative term, and this only oc-
curs at the given resonant surface r = a provided the purely geometrical condition,
obtained with the help of (1.122b),

r

∣∣∣∣Ω′′(r)

Ω′(r)
− U ′′(r)

U ′(r)

∣∣∣∣ < 4 , (1.128)

is met there. One can write down flows for which this is not satisfied, and so which
would not be dynamos at large Rm, even though they appear well-endowed with
helical streamlines.

This example can be generalised away from strictly circular geometry to allow more
general stream surfaces (Gilbert & Ponty, 2000). As an example of an application,
the resulting theory gives excellent predictions of the instability threshold for these
Ponomarenko modes in a study (Plunian, Marty & Alémany, 1999) of dynamo insta-
bilities in model nuclear reactor flows, even at moderate Rm. Such modes can also
occur in convective cellular flows (e.g. Ponty, Gilbert & Soward, 2001). A smooth
flow of the form (1.117) can give slow dynamo action, but if Ω(r) and U(r) have
discontinuities at some radius r = a, then fast dynamo action can occur, with growth
rates γ = O(1) for modes with m, k = O(ε−1/2) (Gilbert, 1988); we will not discuss
this further here. Some aspects of the saturation of smooth Ponomarenko dynamos
are studied in Bassom & Gilbert (1997) for Re � Rm � 1: the flow adopts a
layered structure, with solid body rotation in a broad region surrounding the radius
a and where the α–effect and field are concentrated. Outside are thin layers where
the shear and ω–effect are significant.

These Ponomarenko modes, with spiralling tubes of field alternating in direction, are
rather localised; for example a mode would sit in one cell of a convective flow. They
are far from the mean field dynamos which are traditionally studied by means of an
α–effect and discussed in Section 1.5. The best laminar flow to study which allows
such large-scale field generation is the Roberts (1970) flow, which was introduced
in Section 1.4,

u = (sin x cos y,− cos x sin y, K sin x sin y) , K =
√

2 . (1.129a,b)

This is a Beltrami flow, with vorticity ∇ × u = Ku proportional to the flow itself.
It thus provides a steady solution to the Euler equation, and is a member of the ABC
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family of flows; the general ABC flow is given by

u = (C sin z + B cos y, A sin x + C cos z, B sin y + A cos x) , (1.130)

where A, B and C are parameters (and (1.129a,b) is obtained by setting A = B =
2−1/2, C = 0, rescaling and rotating axes through π/4). At low Rm the Roberts flow
provides an α–effect dynamo, destabilising large-scale magnetic field modes (e.g.
Moffatt, 1978). The field is dominated by diffusion; the flow is a small perturbation
to the field on the scales of the flow, but one which has a large-scale destabilising
effect. A nonlinear study within this low Rm model reveals an inverse cascade of
magnetic energy to large scales (Gilbert & Sulem, 1990).

At large Rm, however, the field tends to localise on stream surfaces. The flow
is independent of z; there is an array of square helical cells, in which the flow is
spiralling, where dynamos can exist. However the key new feature is the network
of hyperbolic stagnation points (x, y) = (nπ,mπ), joined by straight-line sepa-
ratrices: new magnetic modes appear, localised on this network. A mode B ∝
exp(i k z + σ t) with wavenumber k in z has growth rate

γ ≡ σ = α k − ε k2 , α = −1
2
k ε1/2 G , G � 1.0655 . (1.131a,b,c)

(Childress, 1979; Soward, 1987). This is valid for k = O(1), but the growth rate
increases with k, and the above equation is suggestive of a maximum growth rate
γ = O(1) for k = O(ε−1/2), that is, a fast dynamo. A delicate analysis (Soward,
1987) shows that the maximum growth rate is in fact given by

γ = O((log log ε−1)/ log ε−1) , k = O(ε−1/2/
√

log ε−1) . (1.132a,b)

Is this a fast dynamo? Not technically, as the growth rate still goes to zero as ε → 0
and so the dynamo is slow. However the decay is only logarithmic in ε, and what is
a logarithm between friends? In view of our opening remarks in this chapter, this is
therefore still an interesting and important slow dynamo mechanism; for example,
similar Roberts modes are found in the study of Plunian, Marty & Alémany (1999).
One important feature to note is that the fastest growing magnetic field modes have a
very small lengthscale in z. They are extended in x and y (unlike the Ponomarenko
modes), but the magnetic energy is entirely at the diffusive scales, k � O(ε−1/2). In
the Roberts dynamo diffusion is still playing a crucial role in the amplification pro-
cess, and the field has to adopt diffusive scales to benefit. This should be contrasted
with the fast dynamos below, where the magnetic fields have typically a power-law
spread of energy over a range of scales, from the full scale of the flow down to
diffusive scales.

© 2007 by Université Joseph Fourier



1.6 – LARGE MAGNETIC REYNOLDS NUMBERS 47

(a)

(d)

(b)

(c)

(e)

Figure 1.12 - The stretch–twist–fold dynamo: an initial flux tube (a), is stretched
(b), twisted (c) and folded (d), to obtain a doubled flux tube. (e) a folded flux tube
after two STF cycles.

1.6.2. THE STRETCH–TWIST–FOLD PICTURE

In so far as finding fast dynamos, the problem with the flows so far discussed is that
diffusion is crucially involved in the amplification process. In fact, in rough terms,
these steady flows have dynamos of an αω–type at large Rm. Field perpendicular to
stream surfaces is stretched out along stream surfaces by the flow, giving strong field
parallel to stream surfaces (an ω–effect); in curved geometry weak diffusion acts
on this parallel field to generate perpendicular field (an α–effect). This αω–cycle
allows the field to grow and the dynamo to operate. To avoid the dynamo process
being limited by diffusion as in these examples, it is necessary for advection by the
fluid flow to do all the amplification itself without relying on diffusion. The simplest
picture of how this may be achieved is in the stretch–twist–fold (STF) dynamo (see
Section 1.2.3; Vainshtein & Zeldovich, 1972), depicted in Figure 1.12 (see also
Figure 1.2).

In this figure the flow is not given explicitly. Instead the action of the flow is shown
on a tube of field frozen into the fluid; we may think of the perfectly conducting case
ε = 0 for the moment. The initial tube (a) is stretched to twice its length, its cross
section being halved, giving (b). This doubles the field strength and so multiplies
the energy by four. The field is then twisted into a figure-of-eight (c) and folded (d),
to give a tube of similar structure to the original in (a). If this process is repeated,
with a time period T = 1, then the energy at time t = n will be En = 22nE0,
corresponding to a growth rate γ = log 2. Now let us reintroduce weak diffusion;
this will begin to play a role when the field scale becomes of order ε1/2, and will
begin to smooth and reconnect the field (Moffatt & Proctor, 1985). Because the
action of the STF moves has been to bring tubes of field largely into alignment, one
would expect diffusion not to lead to a wholesale destruction of field, but simply to
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(a) (b)

(c) (d)

Figure 1.13 - Cross sections of the torus (a) initially, and (b) after one STF iteration,
(c) two iterations and (d) three iterations. Shading indicates regions containing field,
and white is field-free fluid.

smooth the fine structure in the field, giving γ � log 2 for 0 < ε 
 1 and so a fast
dynamo with γ0 � log 2 .

There are a number of problems with realising the STF picture in practice. The first
is that it is not easy to specify a fluid flow to apply the STF moves (Moffatt & Proc-
tor, 1985). But even in such a flow (or iterated mapping), the field rapidly becomes
unmanageable (Vainshtein et al., 1996), for the reasons indicated schematically in
Figure 1.13. Starting with a magnetic field (black) in a torus, whose cross section
is shown in (a), the doubled up field in (b) will entrain field-free fluid (white) and
so some field will lie outside the original torus. As the stretch, twist, fold opera-
tions are repeated (c,d) the bundle of field lines and entrained fluid will increase in
volume until the whole fluid volume contains strands of field, and it is necessary to
understand the global nature of the fluid flow and folding of field, a problem that has
not been addressed. The field lines also become tangled up in a complicated fashion
(see Gilbert, 2002a), with poorly-understood implications for diffusion of field.

Nonetheless, the STF moves provide a useful picture of how a fast dynamo with
growth rate γ0 � log 2 might operate. This is only a picture, hard to realise in
practice (for example in a convective fluid flow!), but informative nonetheless. The
key points to bear in mind are: first, the flow has chaotic particle trajectories, as the
length of the field lines in the tube doubles with each period. In fact Lagrangian
chaos in a smooth fluid flow is a necessary ingredient for fast dynamo action; tech-
nically the topological entropy h of the flow must be positive (Finn & Ott, 1988;
Klapper & Young, 1995), as we discuss further below. Such chaotic flows are easy
to realise; but the second key ingredient in a fast dynamo is constructive alignment
of magnetic field vectors. The STF moves tend to bring fields close with similar
orientation, which minimises the possible destruction of field through magnetic dif-
fusion.
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(a) (b)

Figure 1.14 - Eigenfunctions of Otani’s flow for k = 0.8 and (a) ε = 5 × 10−4

and (b) ε = 5 × 10−5. The magnitude of the magnetic field is shown, with black
indicating zero field. (See colour insert.)

1.6.3. FAST DYNAMOS IN SMOOTH FLOWS

The numerical study of dynamo action in chaotic flows began with investigation of
steady ABC flows defined by equation (1.130) (Galloway & Frisch, 1986). However
these are generally three-dimensional, having complex stream line topology, and
solving the induction equation is computationally intensive. It is easier to deal with
two-dimensional flows u(x, y, t) (independent of z), and the best-studied examples
are essentially variants of (1.129), for which time dependence is introduced and
results in a breaking up of the separatrices joining hyperbolic stagnation points, to
give chaotic layers. One example is the flow of Otani (1993),

u(x, y, t) = 2 cos2 t (0, sin x, cos x) + 2 sin2 t (sin y, 0,− cos y) , (1.133)

which is similar to an example studied by Galloway & Proctor (1992) and discussed
in Section 1.4.1. Growing magnetic fields take a Floquet form

B(x, y, z, t) = ei k z+σt b(x, y, t) , (1.134)

in which b is periodic in time, period 2π. The z–wave number k is a parameter and
for each diffusivity ε, the mode with maximum growth rate may be found. Numeri-
cal study (Otani, 1993) shows good evidence for fast dynamo action with

γ0 � 0.39 , k � 0.8 . (1.135a,b)

Note that the value of k at which growth rates are maximised does not depend on
ε; the magnetic field has a large-scale component, unlike in the slow Ponomarenko
and Roberts dynamos discussed above.
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However while numerical studies show that the convergence of γ(ε) to γ0 is rapid
as ε → 0, the magnetic eigenfunctions become more and more complicated, as in-
dicated in Figure 1.14. This shows a snapshot of magnetic energy (averaged over z)
plotted as a function of (x, y). In the centre are bands of field, resulting from chaotic
stretching and folding in the flow in the (x, y)–plane. In the large black, field-free
regions the flow has islands of KAM surfaces with insignificant stretching.3

The action of the flow is to fold field in the plane, giving the belts of field dominat-
ing the centre of the picture. This would not give any kind of constructive alignment
of field vectors, however, without the shearing motion in z, which advects field up
and down, giving changes of sign of field by virtue of the ei k z dependence on z; see
(1.134). By this means bands in the centre of the picture have fields that are largely
aligned. This “stretch–fold–shear” mechanism amplifies a large-scale field compo-
nent, while creating a cascade of fluctuations to small scales; these fluctuations are
smoothed out by diffusion, which plays a relatively passive role.

While the above flow of Otani (1993) has been written down without any obvious
link to real astrophysical fluid flows, the above mechanism of stretching and folding
in the (x, y) plane and shearing in z is very natural and can occur, for example, in
convection. Two-dimensional time-dependent convective eddies can give chaotic
folding in the plane containing the roll axes, while the influence of rotation (natural
in an astrophysical body) can drive flows along their axes (Kim, Hughes & Soward,
1999; Ponty, Gilbert & Soward, 2001).

The flows of Otani (1993) and Galloway & Proctor (1992) have also been studied in
dynamical regimes, where the given fluid flow is now driven by a prescribed body
force until the field grows and becomes dynamically involved through the Lorentz
force. Studies indicate that the field saturates through suppression of the Lagrangian
chaos and alpha effect in the flow, although there is also some evidence that an
inverse cascade of magnetic energy to large scales may occur in spatially extended
systems, on long time-scales; see for example, Maksymczuk & Gilbert (1998) and
Cattaneo et al. (2002).

1.6.4. FAST DYNAMOS IN MAPPINGS

Studying fast dynamo action in flows such as Otani’s above, or an ABC flow, is ex-
tremely difficult. The problem is that it is not just the individual Lagrangian trajecto-
ries that are important, but how ensembles of trajectories lead to folding of magnetic
field. Most progress in understanding has been obtained by studying dynamo action
in models for which the fluid flow is replaced by a mapping.

3 KAM=Kolmogorov-Arnold-Moser: this refers to regions where trajectories are not chaotic and
lie on surfaces.
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(a)

(c)

(b)
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Figure 1.15 - A baker’s map with uneven stretching, as described in the text (from
Gilbert 2006).

Perhaps the simplest mapping that can be considered is the stacked Baker’s map
with uneven stretching (Finn & Ott, 1988): this discontinuous map of a square, say
[−1, 1]2, to itself is depicted in Figure 1.15. The map M is defined by a parameter
α with 0 < α < 1 and we set β = 1 − α. The unit square is cut at a horizontal level
y = −1 + 2α into two pieces. The first is stretched by a factor α−1, changing its
dimensions in (x, y) coordinates from 2 × 2α to 2α × 2; see (b). The second piece
is stretched by a factor β−1, going from 2 × 2β to 2β × 2. Finally the two squares
are reassembled in (c), stacked together, and this completes the mapping process.
This mapping can be thought of as a simplified model for the STF picture, giving
the doubling up of the tubes of flux in the presence of uneven stretching (Finn &
Ott, 1988). The map M may be written as

M(x, y) =

{
(α(x + 1) − 1, α−1(y + 1) − 1) for y < Υ ;

(β(x − 1) + 1, β−1(y − 1) + 1) for y ≥ Υ ,
(1.136)

with Υ = −1 + 2α ≡ 1 − 2β.

We imagine starting with a field B(x) = b(x) ey and using the Cauchy solution, it
may be checked that the action of M is to replace b(x) with the field Tb, where

Tb(x) =

{
α−1b(α−1(x + 1) − 1) for x < Υ ;

β−1b(β−1(x − 1) + 1) for x ≥ Υ .
(1.137)

T is called the dynamo operator (without diffusion). Ignoring diffusion for the
present, we may imagine iterating this operator on an initial unit magnetic field
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b0(x) = 1, possessing flux Φ0 = 2 through any horizontal line y = constant. Apply-
ing the map once yields two rectangles of field, one of width 2α and strength α−1,
and one of width 2β, strength β−1: the flux Φ1 = 4 has been doubled. Iterating the
map we see that Φn = 2n+1. If we can ignore the effects of diffusion we have a
dynamo with growth rate γ0 = log 2 as in the STF picture, if we agree that each iter-
ation of the mapping takes unit time. We would expect the effect of weak diffusion
to be unimportant, as the fields that emerge through repeated application of M are
all pointing in the same direction (Finn & Ott, 1990).

The key feature that the stacked Baker’s map highlights is that the rate of growth of
flux can be different from the Liapunov exponent, a popular measure of how chaotic
a system is. To measure this quantity we imagine how a y–directed vector attached
to a typical point (x, y) is stretched as the map M is iterated. Since on average a
proportion α of the iterates Mn(x, y) will lie in y < Υ, where the vector will be
stretched by a factor α−1, and a proportion β in y > Υ, with stretching by β−1, the
Liapunov exponent will be

λLiap = α log α−1 + β log β−1 . (1.138)

This is less than the fast dynamo growth rate γ0 = log 2, except in the special case
α = β = 1/2, of even stretching. This at first seems surprising, as magnetic field
is composed of vectors, and surely both γ0 and λLiap measure the stretching rate of
vectors! In fact there is a difference in the averaging processes involved. In the
case of magnetic field, in computing a flux, we are weighting more heavily the more
stretched vectors, by integrating b(x) dx, whereas a Lipaunov exponent involves a
typical point, with weighting dx in the sense of a measure. Equivalently, stronger
magnetic fields tend to concentrate in the regions of higher stretching, and so give a
different weight in the average.

A more useful quantity to measure as a diagnostic in a fast dynamo is the rate of
stretching hline of material lines (which could be thought of as field lines in the ab-
sence of diffusion). If the reader experiments with placing a line, say x = y in the
square [−1, 1]2 (see Figure 1.15), and then iterating the map M on all the points con-
stituting the line, he or she will soon find that the line length approximately doubles
with each iteration, giving an asymptotic value hline = log 2, which is the same as the
fast dynamo growth rate γ0. Like magnetic field, material lines tend to concentrate
in the regions of high stretching (with the consequent inequality λLiap ≤ hline).

This then suggests the general result that the fast dynamo exponent γ0 should not
exceed hline. In fact in two dimensions the exponent hline may be identified with the
topological entropy h, and so the result one might expect is

γ0 ≤ h ; (1.139)

this was argued by Finn & Ott (1988) and proved rigorously (under some natural
smoothness conditions) by Klapper & Young (1995). The fact that γ0 can be less
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Figure 1.16 - The stretch–fold–shear map. (a) Magnetic field depending on z is
stretched and folded with a Baker’s map in the (x, y)–plane to give (b). In (c) the
field orientation is shown in the (x, z)–plane, which after the shear operation gives
(d) (from Gilbert, 2002b).

than h is easily understood: the Baker’s map in (1.136) above gives perfect align-
ment of field in the vertical: all vectors point in the +y direction with our given
initial condition. If instead there is folding of field in a more realistic scenario,
which can be modelled using a Baker’s map with several cuts and rotating one or
more rectangles of field at each iteration, the flux Φn, a signed quantity, will tend to
grow less quickly than the rate of stretching of material lines. This aspect can also
be characterised by a cancellation exponent (Du et al., 1994). If there are no sign
changes in the field, the cancellation exponent would be zero, and we would have
γ0 = h.

While the uneven Baker’s map model is an interesting and useful way to explore
these considerations of uneven stretching and cancellations, it suffers from the fact
that it is derived from the STF picture, which has the shortcomings and problems
mentioned above. Note that for α = β = 1/2 the Baker’s map is trivial (doubling
all field vectors and no cancellations), and so probably too simple to model what
occurs in a typical fluid flow!
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1.6.5. THE STRETCH–FOLD–SHEAR MODEL

Another idealised model that does capture some of the amplification mechanism
seen in Otani’s (1993) flow and similar flows, is the stretch–fold–shear (SFS) model
of Bayly & Childress (1988, 1989). This model consists of a number of components.
The first is a folded Baker’s map (with uniform stretching), which maps the square
−1 ≤ x, y ≤ 1 to itself, by stretching and folding. This is like the process depicted
in Figure 1.15 with α = β = 1/2, except that the second rectangle is rotated through
π before reassembly, representing the folding of a sheet of field. The map is defined
by

M1(x, y, z) =

{
(1

2
(x − 1), 1 + 2y, z) for y < 0 ;

(1
2
(1 − x), 1 − 2y, z) for y ≥ 0 .

(1.140)

The action of this on a magnetic field

B(x, y, z) = ei k zb(x) ey + complex conjugate (1.141)

is shown in Figure 1.16(a,b), giving one fold of field in the (x, y)–plane. If this map
were now simply repeated, the effect would be to obtain ever finer alternating bands
of magnetic field in this plane, vulnerable to diffusion. There is plenty of stretching,
but no constructive folding. The flux through a line x = constant would become
zero after one iteration and remain so thereafter. In this case, we would have γ0

negative, but hline = log 2.

Thus a second ingredient is required, a shear in the z–direction, shown in a top-down
view going from (c) to (d). The action of the shear is to bring upward pointing field
(+) approximately into alignment with other upward fields, and similarly downward
pointing field (−). This corresponds to the mapping

M2(x, y, z) = (x, y, z + αx) , (1.142)

where α is a shear parameter (not related to the previous α, and not intended to
imply an α–effect!). The alignment is only approximate, but intended to capture
the basic mechanism observed in flows such as Otani’s, in which belts of field are
drawn out and folded in the (x, y)–plane, and then sheared in the z–direction (Bayly
& Childress, 1988).

In this way we obtain the SFS dynamo model: the field is first stretched and folded
(by M1) and then sheared (by M2). Acting on the complex field b(x) in (1.141)
above gives a field Tb, with

Tb(x) =

{
2e−i α k x b(1 + 2x) for x < 0 ;

−2e−i α k x b(1 − 2x) for x ≥ 0 .
(1.143)
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T is again the dynamo operator without diffusion. For diffusion we employ suitable
boundary conditions and allow the field b(x) to diffuse for unit time according to
∂tb = ε∂xxb. Possible boundary conditions (only employed at x = −1, 1) include
insulating (I), perfectly conducting (C) and periodic (P),

b(1) = b(−1) = 0 (I) , ∂xb(1) = ∂xb(−1) = 0 (C) , b(x) periodic (P) .
(1.144a,b,c)

The diffusion step may be written as mapping b to Hεb, where Hε is another operator
involving heat kernels (for further details see Gilbert, 2002b, 2005).

Finally the SFS dynamo operator with diffusion is written Tε = HεT . The magnetic
field is most easily discretised using Fourier series, and eigenvalues λ for Tεb = λb
sought numerically using matrix eigenvalue solvers. If the mapping and diffusion
are assumed to take a time unity, then the corresponding magnetic growth rate is

σ = log λ , (1.145)

and we refer to λ as the growth factor. An eigenvalue λ then corresponds to a grow-
ing magnetic mode provided that |λ| > 1. Our aim is to understand the properties
of eigenvalues of Tε in the limit as ε → 0. If eigenvalues remain bounded above
|λ| = 1 in the limit, then the SFS model is a fast dynamo.

Figure 1.17(a,b,c) shows the modulus |λ| of the leading eigenvalues λ as a function
of α (with k = 1 set without loss of generality) for the (I), (C) and (P) boundary
conditions given above, at ε = 10−5. We see that it is necessary in all cases to
increase the shear parameter α above about π/2 to obtain growing modes. There
has to be sufficient constructive alignment for the dynamo to operate.

We also see that the modes with the larger values of |λ|, certainly |λ| > 1, are robust
to the kinds of boundary condition employed, though the picture is rather different
for marginal and decaying modes with |λ| ≤ 1. Further numerical study (not set
out here) indicates that the more robust eigenvalues, with |λ| > 1, appear to show
convergence to positive values as ε → 0, although individual magnetic modes b(x)
show increasingly fine structure in this limit. Thus there is good evidence for fast
dynamo action in the SFS model (Bayly & Childress, 1988, 1989).

This leaves open the mathematical question: how can we prove fast dynamo action,
and obtain some information about these growth rates for small positive diffusivity,
0 < ε 
 1 ? We need to set out a sensible problem for zero diffusion, and then treat
diffusion as a perturbation. The key idea of Bayly & Childress (1989) is to note that
while the (diffusionless) operator T tends to reduce the scales of a magnetic field
and generally has no eigenfunctions, its adjoint T ∗ (in L2), given by

T ∗c(x) = e−i α 1
2
(x−1)c

(
1
2
(x − 1)

)
− e−i α 1

2
(1−x)c

(
1
2
(1 − x)

)
, (1.146)

instead tends to expand scale and average. T ∗ can possess smooth eigenfunctions
even at zero diffusion, unlike T .
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Figure 1.17 - Moduli of eigenvalues |λ| plotted against α for the SFS model. The
boundary conditions are (a) insulating, (b) perfectly conducting and (c) periodic,
with ε = 10−5. In (d) eigenvalues are obtained using a power series and ε = 0 (from
Gilbert, 2005).

If we seek an eigenfunction T ∗c = λc, and expand the function c(x) in a basis xn,
that is as a power series about the origin, we obtain a matrix for T ∗ whose eigen-
values may be found numerically. Figure 1.17(d) gives growth factors obtained
in this way for zero diffusion. The results are very close to those obtained in Fig-
ure 1.17(a,b,c) in the presence of weak diffusion, particularly for larger values of |λ|.
Plainly most branches in Figure 1.17(d) are relatively robust to diffusion, though this
depends on boundary conditions and the size of |λ|.
One branch that shows particular sensitivity to diffusion and boundary conditions is
the horizontal branch in 1.17(d), for which the adjoint eigenfunction of (1.146) is
given analytically by

c(x) = ei α (x−1) − ei α (1−x) = 2 i sin α(x − 1) , λ = ei α . (1.147a,b)

This branch only survives for conducting boundary conditions. Current research
(Gilbert, 2005) is aimed at understanding the effects of diffusion and boundary con-
ditions in the SFS model. The aim is to be able to use perturbation theory to write,
for a given branch and value of α,

λ(ε) � λ(0) + Cεq , (1.148)
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where λ(0) is the complex growth factor obtained by means of a power series for
zero diffusion, as shown in Figure 1.17(d). The term Cεq is the diffusive correction,
which is dependent on the structure of the mode and boundary conditions, and q > 0
is the condition on the exponent q for the branch to survive the effects of diffusion.
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CHAPTER 2

NONLINEARITIES AND SATURATION

Stephan Fauve, Raymond Hide,
David Hughes, Irene Moroz,

François Pétrélis

In this chapter, we focus on the effects of nonlinearity. After general considerations
in Section 2.1, we investigate the role of nonlinearity in saturating the growth of
the magnetic field for a dynamo with a spatially periodic flow in Section 2.2. We
then turn to the more general situation of saturation in the vicinity of the dynamo
threshold; first in the low Re limit in Section 2.3 and then in the high Re limit in Sec-
tion 2.4. We then address the issue of dynamo saturation in flows strongly affected
by rotation (with planetary applications in mind) in Section 2.5, and we present
some conjectures for the magnetic field generated by a turbulent flow when Re and
Rm are both large in Section 2.6. Mean field dynamo saturation (with astrophysical
applications in mind) is discussed in Section 2.7. Finally, we return in Section 2.8
to the apparently simple disc dynamo model used as an introductory example in
Chapter 1 to show how rich the nonlinear dynamical behaviour can be.

2.1. GENERAL CONSIDERATIONS

The study of dynamo action is motivated both by laboratory experiments and by ob-
servations of astrophysical or geophysical magnetic fields. Recently, the first homo-
geneous fluid dynamos have been successfully demonstrated: in Karlsruhe (Stieglitz
& Müller, 2001) using a flow in an array of pipes set up in order to mimic a spa-
tially periodic flow proposed by G.O. Roberts (1972), and in Riga (Gailitis et al.,
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2001) using a Ponomarenko-type flow (Ponomarenko, 1973). Although there were
no doubts about self-generation of magnetic fields by Roberts or Ponomarenko-type
laminar flows, these experiments have displayed several interesting features:

– The observed thresholds are in rather good agreement with theoretical predic-
tions (Busse et al., 1996; Rädler et al., 1998; Gailitis et al., 2002a) made by
considering only the laminar mean flow and neglecting the small-scale turbu-
lent fluctuations that are present in both experiments.

– The nature of the dynamo bifurcation, stationary for the Karlsruhe experiment
or oscillatory (Hopf) in the Riga experiment, is also in agreement with laminar
models.

– On the contrary, the saturation level of the magnetic field, due to the Lorentz
force back reaction on the flow, cannot be predicted with a laminar flow model.
It has been shown indeed that different scaling laws exist in the supercritical
dynamo regime depending on the magnitude of the Reynolds number (Pétrélis
& Fauve, 2001).

These observations raise several questions: we do not discuss here the effect of tur-
bulence on the dynamo threshold (see Fauve & Pétrélis, 2003) or the characteristics
of magnetic field fluctuations (see Bourgoin et al., 2002) but rather try to understand
the scaling law for the mean magnetic field amplitude above the dynamo threshold.
To this end, we take into account the back reaction of the magnetic field on the ve-
locity field. We thus try to solve the dynamic dynamo problem, or in other words, to
find a nonlinear equation for the amplitude of the linearly unstable mode at the bi-
furcation. Solving this equation determines the subcritical or supercritical nature of
the bifurcation and in the later case, the amplitude of the magnetic field as a function
of the distance to the dynamo threshold.

Both the Karlsruhe and Riga experiments operate in the vicinity of dynamo threshold
(typically 10% above threshold) and it is unlikely that a laboratory experiment could
reach high Rm values (say 10 times critical) because the power needed to drive a
turbulent flow increases like the cubic power of its mean velocity. It is also possible
that the Geodynamo does not operate too far from threshold, but it is not the case
of other astrophysical objects for which huge values of Rm can be reached. Weakly
nonlinear theory is of little use in these situations as well as in the case of a strongly
subcritical bifurcation that may be the case of the Geodynamo.

Magnetic fields exist on a wide range of scales in astrophysics. Their orders of
magnitude as well as some associated relevant parameters for planets, stars and
our galaxy are given in Table I. It is perhaps meaningless to try to compare these
data because these astrophysical objects have strongly different physical properties.
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Table I - Approximate parameters and magnetic field strength of some astrophysical
objects (Zeldovich et al., 1983). The size L is based on the typical length (radius
for spheres, thickness for discs) of the conducting region (not of the full object).
The magnetic field strength is an averaged one (in the case of the Sun, the field
can locally be 103 times stronger). The resistivity η is usually based on molecular
estimates, except in the Galaxy for which it represents “ambipolar diffusion”.

the Sun Jupiter Earth White Neutron
Galaxy core dwarfs stars

|B| (T) 10−10 10−4 4×10−4 10−4 102 - 104 106 - 109

ρ (kg m−3) 10−21 1 103 104 105–1012 1013–1018

L (m) 1019 2×108 5×107 3×106 106 104–106

η (m2 s−1) 1017 103 10 2
|B|2L3/2μ0 1043 4×1022 1022 2×1017

|B|2Lη/2μ0 1022 109 4×107 2×105

However, we may observe that the strength of the magnetic field, B, is not strongly
related to the size of the object L, but seems to increase with its density ρ. If instead
of looking at the intensity of the magnetic field, we consider the typical magnetic
energy of the object 〈|B|2〉L3/2μ0 (μ0 is the magnetic permeability of vacuum), we
find the expected ordering from the galaxy to the Earth. We may also consider the
typical value of the Joule dissipation, which is obtained by dividing the magnetic
energy by the characteristic magnetic diffusion time L2/η . As such, we get an
idea of the minimum amount of power which is necessary to maintain the magnetic
field against Joule dissipation. Again, we observe the expected ordering from the
galaxy to the Earth. Note that these values have certainly been underestimated for
two principal reasons. First, they are estimated from the visible (poloidal) part of the
magnetic field, and are thus strongly underestimated if the azimuthal field inside the
body is large compared to the poloidal component. Second, we have assumed that
the length scale of the gradients of the magnetic field is the size L of the conducting
medium. Magnetic energy at smaller scales will lead to a shorter diffusion timescale
and thus to a higher dissipated power.

Let us first recall the induction equation (1.14) and the Navier-Stokes equation (1.27)
and restrict considerations to incompressible flows (∇ ·u = 0). Further, we neglect
the Coriolis force, but include the Lorentz force (1.18). Therefore,

∂B

∂t
= ∇ × (u × B) + ηΔB , (2.1a)

∂u

∂t
+ (u · ∇)u = −∇

(
p

ρ
+

|B|2
2μ0

)
+ νΔu +

1

μ0ρ
(B · ∇)B . (2.1b)
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The flow is created, either by moving solid boundaries or by a body force added
to the Navier-Stokes equation. We have to develop equations (2.1a,b) close to the
dynamo threshold in order to derive an amplitude equation for the growing mag-
netic field. If the dynamo bifurcation is found to be supercritical, this allows us to
calculate the saturated magnetic field.

Thus, even in the simplest configuration, the problem involves three dimensionless
parameters. One may choose the Reynolds number, Re, the magnetic Reynolds
number, Rm, and the Lundquist number, S = 〈|B|2〉μ0(σL)2/ρ, leading in general
to the following form of law

〈|B|2〉μ0(σL)2

ρ
= f(Rm, Re) . (2.2)

Another possible choice is obtained by replacing Re by the magnetic Prandtl num-
ber, Pm ≡ Rm/Re = μ0σν = ν/η. For most fluids, Pm � 1 i.e. Re � Rm.

In general, the analytic determination of f using weakly nonlinear perturbation the-
ory in the vicinity of the dynamo threshold is tractable only in the unrealistic case
Pm � 1 such that the dynamo bifurcates from a laminar flow (Re � 1). For
Pm � 1, many hydrodynamic bifurcations occur first and the flow becomes turbu-
lent before the dynamo threshold.

We first present the structure of the perturbation analysis of weakly nonlinear theory
in the vicinity of the dynamo threshold in the tractable case Re � 1. We then
discuss the realistic situation (Re � 1) and, using dimensional or phenomenological
arguments, show that the expression of the generated magnetic field as a function of
the fluid parameters strongly differs from the case Re � 1.

Astrophysical or geophysical dynamos involve many more parameters due to the
nature of the driving of the flow. A particularly important one is the global rotation
rate. We shortly review how this may affect the saturation of the magnetic field.
Finally, we discuss some conjectures in the limit of Re and Rm both large for a
turbulent flow without global rotation.

2.2. SATURATION OF A DYNAMO GENERATED
BY A PERIODIC FLOW

It has been shown by G.O. Roberts (1970, 1972) that many spatially periodic flows
generate a magnetic field at a large scale compared to their spatial periodicity. In
that case the weakly nonlinear problem above the bifurcation threshold is also more
easily tractable (Gilbert & Sulem, 1990). We recall some of these linear and non-
linear results obtained for periodic flows and that have been recently used to discuss
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the results of the Karlsruhe experiment (Tilgner & Busse, 2001; Rädler et al., 2002a,
2002b).

2.2.1. SCALE SEPARATION

We consider a spatially periodic velocity field with wavelength � and zero mean
value, and we assume that a magnetic field B0 is generated on a spatial scale L. A
magnetic field with spatial periodicity � is generated by the interaction of B0 with
the flow. We thus write

B = B0 + b , (2.3)

with 〈b〉 = 0, where 〈·〉 stands for the spatial average over one wavelength �. Insert-
ing (2.3) in the induction equation, and averaging over space, we get the evolution
equation for the mean field B0

∂tB0 = ∇ × 〈u × B〉 + ηΔB0 . (2.4)

Subtracting (2.4) from the induction equation, we get the evolution equation for the
fluctuating field b

∂tb = ∇ × (u × B0 + u × b − 〈u × b〉) + ηΔb . (2.5)

We have to find b as a function of B0 using equation (2.5) in order to get a closed
equation for the mean field from (2.4). Equation (2.5) may be solved easily if b = |b|
is small compared to B0 = |B0|; we then have at leading order a diffusion equation
for b with a source term depending on B0 and the velocity field. Then, we get

η
b

�2
∼ uB0

�
, thus b ∼ u�

η
B0 . (2.6)

Using this expression for b in order to estimate 〈u × b〉, which does not depend
any more on � after being averaged, we get from (2.4) the following condition for
dynamo onset on uc = |u|:

u2
c�

η

B0

L
∼ ηB0

L2
, thus uc ∼

η√
L�

. (2.7)

We first observe that b ∼
√

�/LB0 � B0 provided that � � L. In this limit, the
magnetic Reynolds number defined on each eddy of size � is thus very small whereas
the one defined on L is large. We observe that the relevant definition here for the
magnetic Reynolds number would be

Rm2 ≡
|u|

√
L�

η
, (2.8)
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the critical value of which for dynamo onset is of order one. Consequently, even if
the above mechanism works, we cannot reach the dynamo onset just by increasing
scale separation. For η and |u| fixed, it does not help to decrease �. Scale separation
makes it possible to keep the magnetic Reynolds number small at dynamo onset if
it is defined on the scale of each eddy, �. In this limit, the field B0 is not strongly
distorted by the fluid motion. This allows easier analytical calculations.

2.2.2. THE G.O. ROBERTS DYNAMO

We consider the spatially periodic flow (see Section 1.4.1) with velocity field

u(x, y, z) = (U sin ky, U cos kx, V (sin kx + cos ky)) . (2.9)

We have 〈u〉 = 0 and the mean helicity is H = 〈u · ∇ × u〉 = −2kUV . Assuming
that b is small compared to B0 = |B0|, we get from equation (2.5)

b ≈ 1

η k
(U B2 cos ky, −U B1 sin kx, V B1 cos kx − V B2 sin ky) , (2.10)

where B0 = (B1, B2, B3). We thus reach

〈u × b〉 ≈ UV

ηk

⎛
⎝ 1 0 0

0 1 0
0 0 0

⎞
⎠ B0 . (2.11)

We observe that if a large scale field exists along the x or y–axis, the cooperative
effect of small scale periodic fluctuations is to drive a current parallel to the large
scale field. This has been understood by Parker (1955) and is due to the helical
nature of the flow. Any field B1 along the x–axis is distorted in the vertical (x, z)–
plane by the z–component of the flow of amplitude V . The field is twisted out of the
(x, z)–plane by the toroidal component of the flow of amplitude U . This drives field
loops in the (y, z)–plane, i.e. a current parallel to x, which generates a magnetic
field with a non-zero component along the y–axis, B2. B2 can then regenerate B1

through the same process. The mean electromotive force 〈u × b〉 in the mean field
equation (2.4) was described by Steenbeck & Krause (1966) as the “α–effect” (see
for instance Krause & Rädler, 1980). In this terminology, the G.O. Roberts’ dynamo
is an α2–dynamo. Defining α = UV/ηk, we have for a mean field of the form
B0(z, t) = (B1, B2, 0) , where B1 and B2 satisfy

∂B1

∂t
= −α

∂B2

∂z
+ η

∂2B1

∂z2
,

∂B2

∂t
= α

∂B1

∂z
+ η

∂2B2

∂z2
. (2.12a,b)

Defining A = B1 + iB2, we get

∂A

∂t
= −iα

∂A

∂z
+ η

∂2A

∂z2
. (2.13)
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The linear stability analysis of the solution A = 0 (i.e. B0 = 0) is straightforward.
We consider normal modes of the form A ∝ exp(ηt ± iKz) and get from equation
(2.13) the dispersion relation

η = ±|αK| − ηK2, (2.14)

which shows that there exists a branch of unstable modes at long enough wavelength
(K < |α|/η).

We observe that dynamo action vanishes if U → 0 or V → 0 in agreement with
antidynamo theorems. It is interesting to consider the behaviour of α when the mag-
netic Reynolds number becomes larger. The calculation of b should be performed
at higher orders in equation (2.5). Solving perturbatively this equation for b as an
expansion in powers of U/ηk, one gets

α =
UV

η k

(
1 − U 2

2 η2 k2
+ ...

)
. (2.15)

α increases linearly with V , but its behaviour as a function of U is more complex.
It first increases but reaches a maximum and then decreases as U is increased. This
behaviour is due to the expulsion of the transverse field by the rotating eddies, as
already shown in Rädler et al. (1998) by numerically solving (2.5). It has been
found that α decreases toward zero at large Rm. Note however that the large Rm
limit should be considered carefully. As stated above, the great simplification of
scale separation results from the fact that the magnetic Reynolds number evaluated
on the small scale of the flow is small whereas the one evaluated on the large scale
of the mean field is large. This is clearly apparent in our second order result (2.15).
Truncating the expansion in |u|/η k is not accurate if Rm is too large such that the
magnetic Reynolds number related to the azimuthal motion of the eddies becomes
of order 1.

The α–effect has been demonstrated experimentally by directly measuring the mean
electromotive force generated by a helical flow of liquid sodium in the presence of
an external magnetic field (Steenbeck et al., 1968). Self-generation of a magnetic
field by the α–effect has been achieved recently, using a periodic arrangement of
counter-rotating and counter-current helical vortices that mimic G.O. Roberts’ flow.
Axial and azimuthal sodium flows are driven by pumps in an array of helical ducts
immersed in a cylinder (Karlsruhe experiment, Stieglitz & Müller, 2001).

2.2.3. SATURATION OF DYNAMOS DRIVEN BY THE α–EFFECT

Saturation of an α–dynamo may involve the generation of a large scale flow gener-
ated by the large scale magnetic field (Malkus & Proctor, 1975). If this large scale
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flow is not forbidden by the geometrical configuration, it is likely to exist without
a magnetic field and to play a role already at the level of the kinematic dynamo
problem. On the contrary, if any large scale flow is forbidden, as in the Karlsruhe
experiment, the saturation is due to the modification of the small scale velocity field
which reduces the elecromotive force related to the α–effect. In that case, the pertur-
bation method based on scale separation can be easily extended to the study of the
dynamic dynamo problem, as shown in the case of the G.O. Roberts’ flow (Gilbert
& Sulem, 1990). The mean field equation (2.4) is unchanged, but the mean electro-
motive force 〈u×b〉 should be calculated using both equation (2.5) and the Navier-
Stokes equation (2.1b). The simplest way to generate the G.O. Roberts’ flow is to
add a body force f = −νΔu0 to (2.1b) where u0 is given by (2.9). In the presence
of a magnetic field, we have to leading order

ηΔb ≈ −(B0 · ∇)u , νΔu +
(B0 · ∇)b

ρμ0

+ f ≈ 0 . (2.16a,b)

The first equation is formally unchanged compared to the kinematic calculation al-
though u is no longer prescribed, but should be obtained by solving the linear system
(2.16a,b). The velocity field u0 in the absence of magnetic field is modified by the
Lorentz force. Note that (B · ∇)B ≈ (B0 · ∇)b up to terms of order

√
�/L � 1

from the assumption of scale separation. Solving (2.16a,b), we get for the electro-
motive force

〈u × b〉 ≈ UV

ηk

(
1 +

σB2
2

ρνk2

)−2
⎛
⎝ 1 0 0

0 1 0
0 0 0

⎞
⎠ B0 . (2.17)

We thus find that the α–effect saturates when the magnetic field amplitude increases
because of the action of the Lorentz force on the velocity field. This saturation
should not be confused with that observed for large |u| in (2.15) which is a linear
effect due to flux expulsion. Defining

B̃i

2
=

σB2
i

ρνk2
, (2.18)

we obtain from the mean field equation (2.4)

∂B̃1

∂t
= −α

∂

∂z

[
B̃2

(1 + B̃2
2)

2

]
+ η

∂2B̃1

∂z2
, (2.19a)

∂B̃2

∂t
= α

∂

∂z

[
B̃1

(1 + B̃2
1)

2

]
+ η

∂2B̃2

∂z2
. (2.19b)

Numerical simulation of these equations shows that the magnetic field cascades to
large spatial scales during the saturation process (Gilbert & Sulem, 1990).
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We thus observe that the saturated mean magnetic field obeys the following scaling
law

〈B2
0〉 ∝

ρν

σ�2
(Rm − Rmc) , (2.20)

with Rm =
√

UV
√

Ll/η.

In the case of an isotropic flow, a nonlinear evolution equation for the mean field can
be easily obtained by symmetry considerations. We get

∂TB0 = α∇ ×
(
1 − γB2

0

)
B0 + η ΔB0 . (2.21)

In the absence of a large scale flow, we expect similar nonlinearities in the case
of α2–dynamos generated by small scale turbulent fluctuations. Phenomenological
descriptions leading to equations of the form (2.21) have been proposed (Kraichnan,
1979; Meneguzzi et al., 1981; Gruzinov & Diamond, 1994). We do not expect
however that γ corresponds to the laminar scaling when the Reynolds number of the
flow is large (see below). Different scaling laws have been also proposed in relation
to the helicity injection rate and dynamics.

2.3. SATURATION IN THE LOW Re LIMIT
IN THE VICINITY OF THE DYNAMO
THRESHOLD

2.3.1. A PONOMARENKO TYPE DYNAMO AS A TRACTABLE
PROBLEM WITHOUT SCALE SEPARATION

In the absence of scale separation, it is much more difficult to derive an amplitude
equation for the magnetic field in the vicinity of the bifurcation threshold. We have
performed such a calculation using the following trick. We slightly modified Pono-
marenko’s original configuration (a cylinder in solid body rotation and translation
along its axis, embedded in an infinite static medium of the same conductivity with
which it is in perfect electrical contact) by considering that the rotating cylinder is
hollow and filled with a liquid metal of the same conductivity. This gives a very
simple flow, i.e. solid body rotation and translation, which is the simplest way to
avoid turbulence at dynamo onset. The kinematic dynamo problem is thus the same
as that studied by Ponomarenko. However, above the dynamo threshold, the flow is
modified by the Lorentz force and is expected to saturate the growth of the magnetic
field.

We will not present here the calculation of the amplitude equation (see Nuñez et al.,
2001) but simply show the structure of the perturbation analysis.
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2.3.2. STRUCTURE OF THE PERTURBATION ANALYSIS

The structure of the weakly nonlinear analysis above threshold is as follows: the
forcing generates a velocity field uf and the dynamo bifurcates for uf = uc, i.e.
Rm = Rmc. We write (2.1a) in the form

L
(
B(0)

)
= 0 , (2.22)

where B(0) is the neutral mode at threshold and L is a linear operator that depends
on the bifurcation structure (stationary or Hopf bifurcation). In the case of the Pono-
marenko dynamo, we have a Hopf bifurcation with neutral modes of the form (Pono-
marenko, 1973)

B(0) = A(T )Bp + c.c. = A(T )bp(r) exp i(mθ + kz + ω0t) + c.c., (2.23)

where (r, θ, z) are cylindrical coordinates and c.c. stands for the complex conjugate
of the previous expression.

The flow is forced slightly above threshold, uf = uc + εud + · · · , with ε = (Rm−
Rmc)/Rmc � 1. In addition, the leading order flow distortion by the Lorentz force,
εu(1), yields

u = uf + εu(1) + · · · . (2.24)

For B we have B =
√

ε
(
B(0) + εB(1) + · · ·

)
. (2.25)

We first compute u(1) from equation (2.1b) at order ε:

∂tu
(1) + (uc · ∇)u(1) +

(
u(1) · ∇

)
uc = −1

ρ
∇

(
p1 +

|B(0)|2
2μ0

)

+ νΔu(1) +
1

μ0ρ

(
B(0) · ∇

)
B(0) . (2.26)

If Pm � 1, the flow is laminar at the dynamo threshold, and the Lorentz force is
mostly balanced by the modification of the viscous force, thus

|u(1)| ∝ |B(0)|2L
μ0ρν

. (2.27)

We get from equation (2.1a) at order ε:

L
(
B(1)

)
= ∂TB(0) − ∇ × (ud × B(0)) − ∇ × (u(1) × B(0)) , (2.28)

where T = εt is the slow timescale of B(0) slightly above threshold. The amplitude
equation for B(0) that governs the saturation of the magnetic field is obtained by
applying the solvability condition to equation (2.28):〈
C|L(B(0))

〉
=

〈
C|∂TB(0)

〉
−

〈
C|∇ × (ud × B(0))

〉
−

〈
C|∇ × (u(1) × B(0))

〉
= 0 ,

(2.29)
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where 〈a|b〉 =
∫

a · b dx . It follows that〈
C|∂TB(0)

〉
=

〈
C|∇ × (ud × B(0))

〉
+

〈
C|∇ × (u(1) × B(0))

〉
, (2.30)

where C is an eigenvector of the adjoint problem.

The first term on the right hand side of equation (2.30) corresponds to the linear
growth rate of the magnetic field whereas the second describes the nonlinear satura-
tion due to the modified velocity field u(1). For nonlinearly saturated solutions, we
thus get ud ∝ u(1). In the vicinity of threshold, μ0σL(uf − uc) ∝ Rm − Rmc, and
we obtain

〈|B|2〉 ∝ ρν

σL2
(Rm − Rmc). (2.31)

2.3.3. THE LAMINAR SCALING

We call (2.31) the “laminar scaling”, obtained for Re � 1 and characterised by the
fact that B → 0 if ν → 0 with all the other parameters fixed.

For a Ponomarenko type flow, we obtained a supercritical bifurcation (Nuñez et al.,
2001). The leading order nonlinear effects tend to saturate the growing magnetic
field because the Lorentz force slows down the motion and hence diminishes the
induction. For the magnetic field at saturation Bsat, we obtained

Bsat = 2.82

√
ρν

σR2

√
Rm − Rmc Re {Bp} , (2.32)

where Bp is the neutral mode of the Ponomarenko dynamo.

The magnetic energy has the form of equation (2.31), what we called the laminar
scaling because the Lorentz force is balanced by the perturbation in velocity through
a viscous term. Close to onset, there is obviously no equipartition of energy because
the magnetic energy tends to zero with Rm − Rmc while the kinetic energy is fi-
nite. Neither is there any simple balance between viscous dissipation and Joule
dissipation. For Joule dissipation, we have Pj ∝

∫
|j|2dV ∝

∫
|∇ × B|2dV ∝

(Rm − Rmc). Concerning viscous dissipation Pν , it is proportional to the square of
the stress tensor. This tensor is linear in the total velocity and is thus proportional
to u(1) because the stress tensor of uf is zero (solid body rotation and translation).
Hence Pν ∝ |u(1)|2 ∝ (Rm − Rmc)

2. In this particular case, with no viscous dissi-
pation at onset, we observe that most of the input power is dissipated by Joule effect
close to the dynamo onset. In more complex laminar flows, Joule dissipation is of
course negligible compared to viscous dissipation just above the dynamo threshold.

More realistic helical flow geometries have been considered (Bassom & Gilbert,
1997), but the saturating magnetic field has only been computed in the limit Re �
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Rm � 1 for which it is difficult to have controlled approximations. However, the
result also shares the main property of the laminar scaling, B → 0 if ν → 0 with all
the other parameters fixed.

2.4. SATURATION IN THE HIGH Re LIMIT
IN THE VICINITY OF THE DYNAMO
THRESHOLD

2.4.1. DIMENSIONAL ARGUMENTS

We show now that we can take advantage of the characteristics of experimental
dynamos to find the correct scaling of the magnetic field above the dynamo threshold
(Pétrélis & Fauve, 2001). We have already mentioned that Pm � 1 for most fluids.
More precisely, Pm < 10−5 for all liquid metals. Thus, the Reynolds number is
larger than several millions at the dynamo threshold (Rmc is in the range 10− 100).
In addition, the power needed to generate this turbulent flow increases like the cubic
power of the driving velocity. Consequently, most experimental dynamos should:

- (i) bifurcate from a strongly turbulent flow regime,

- (ii) operate in the vicinity of their bifurcation threshold.

Although (i) makes almost impossible any realistic analytical calculation or direct
numerical simulation, the above two characteristics allow an estimation of the non-
linearly saturated magnetic field above Rmc using dimensional analysis. Our goal
is thus to find the expression of f in equation (2.2) in the limits (i) Re → ∞ and
(ii) Rm − Rmc → 0: (i) implies that the momentum is mostly transported by tur-
bulent fluctuations. Consequently, using the basic assumption of fully developed
turbulence, we can neglect the kinematic viscosity, thus Re. (ii) implies that the
dependence of 〈B2〉 on Rm is proportional to Rm − Rmc, as expected for a super-
critical bifurcation close to threshold. In other words, U = |u| is no longer a free
parameter, but should take approximately the value corresponding to the dynamo
threshold. Thus, (i) and (ii) reduce the number of parameters from 6 to 4, and the
saturated value of the magnetic field can be obtained using dimensional analysis, to
give

〈|B|2〉 ∝ ρ

μ0(σL)2
(Rm − Rmc) . (2.33)

There is no paradox in the fact that the saturated magnetic field is inversely pro-
portional to the square of the electric conductivity and to the square of the typical
lengthscale of the flow. This does not mean that one should have σ and L small in
order to observe large values of |B| since Rm = Rmc will be then achieved for a
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larger flow velocity. Using the typical velocity Uc = |u| at dynamo threshold, we
can write (2.33) in the form, 〈|B|2〉/μ0ρU 2

c ∝ (Rm − Rmc)/Rm2
c , which shows

that the system is very far from equipartition of energy in the vicinity of the dynamo
threshold. We emphasise also that the interaction parameter, N = σL〈|B|2〉/ρ|u|,
is much smaller than one. It is such that

N ∝ Rm − Rmc . (2.34)

2.4.2. HIGH Re DYNAMOS CLOSE
TO THE BIFURCATION THRESHOLD

For Pm � 1 or Re � 1, we can recover the “turbulent scaling” (2.33) using the
structure of the perturbation analysis presented for laminar dynamos. The only dif-
ference is that if Re � 1, we have to balance the Lorentz force with the inertial
instead of the viscous terms in (2.26). We thus get |Blaminar| ∝ |Bturbulent|Pm1/2;
consequently the two scalings strongly differ for experiments using liquid metals
(Pm < 10−5).

It may be instructive to replace ν by the turbulent viscosity, νT ∝ |u|L, in the
laminar scaling (2.31). Using |u| ≈ Rmc/μ0σL, we have

〈|B|2〉 ∝ ρνT

σL2
(Rm − Rmc) ∝

ρ

μ0(σL)2
(Rm − Rmc) . (2.35)

We thus recover the turbulent scaling. However, dimensional arguments of the pre-
vious section do not require any assumption about the turbulent viscosity expression
and are thus clearer.

The Karlsruhe (Stieglitz & Müller, 2001) and Riga (Gailitis et al., 2001) exper-
iments have recently reported values of the saturated mean magnetic field of or-
der 10 mT, roughly 10% above threshold. Both experiments used liquid sodium
(μ0σ ≈ 10 m−2 s , ρ ≈ 103 kg m−3). The inner diameter of the Riga experiment is
L = 0.25 m. The spatial periodicity of the flow used in the Karlsruhe experiment
is of the same order of magnitude, within a cylinder of radius 0.85 m and height
0.7 m. The presence of two length scales in the Karlsruhe experiment makes the
comparison with our analysis more difficult, but we can easily compare the results
of the Riga experiment with our “turbulent” scaling in (2.33) and “laminar” scaling
in (2.31), that predict a saturated field of order 10 mT (respectively 10 μT). Taking
into account the qualitative nature of our analysis, we conclude that the “turbulent
scaling” is in agreement with the experimental observations whereas the “laminar
scaling” predicts a field that is orders of magnitude too small. The “turbulent scal-
ing” also gives a correct order of magnitude for the Karlsruhe experiment if its
spatial period is taken as the relevant lengthscale in (2.33). We thus note that the

© 2007 by Université Joseph Fourier



72 Stephan FAUVE & François PÉTRÉLIS

above experiments display a very interesting feature: turbulent fluctuations can be
neglected when computing the dynamo threshold; indeed, the observed thresholds
are in rather good agreement with those predicted by solving the kinematic dynamo
problem for the mean flow alone. However, the high value of Re has a very strong
effect on the value of the saturated magnetic field above the dynamo threshold.

We emphasise that the correct identification of the dominant transport mechanism of
momentum is essential to estimate the order of magnitude of the saturated magnetic
field above dynamo threshold. The reason is that it determines the flow distortion
by the Lorentz force and thus the saturation mechanism of the field.

A laminar model of the flow thus generally leads to a wrong estimate of the magnetic
field amplitude although it sometimes correctly predicts the dynamo threshold. This
does not seem to have been fully understood in the early literature on dynamical
dynamo models. It is of course possible to recover correct orders of magnitude for
the field by using ad hoc turbulent transport coefficients. However, this is not very
useful and may even hide the simplicity of the result.

We have shown that a simple scaling law given by (2.33) for the mean magnetic field
generated by laboratory dynamos can be found because they bifurcate from a high
Reynolds number flow and operate close to the dynamo onset (Pétrélis & Fauve,
2001). It would be interesting to test the validity of this scaling law in existing
laboratory experiments. This has not been done yet, but may be achieved both in
Karlsruhe and Riga experiments by varying the temperature of liquid sodium and
thus its conductivity, σ.

2.5. EFFECT OF ROTATION

2.5.1. WEAK AND STRONG FIELD REGIMES
OF THE GEODYNAMO

We first recall some general features displayed by several geodynamo models (for a

straint on the flow that tends to become nearly two-dimensional. The length scale
� of the flow in a direction perpendicular to Ω is thus much smaller than that along
Ω, � � L. When convection is generated in a rotating sphere, the flow concentrates
in columns of diameter � ∝ L E1/3, where E = ν/ΩL2 is the Ekman number (see

scale magnetic field on length scale L via an α–effect (Busse, 1975b). Plane layer
models (Childress & Soward, 1972; Soward, 1974) display most of the important
features of spherical geometries: increasing the rotation rate too much delays the
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linear instability onset of self-generation because more and more power is neces-
sary to overcome dissipation at small scale �. However, for finite amplitude mag-
netic fields, the Lorentz force suppresses the rotational constraint and allows large
scale motions, leading to much smaller viscous and ohmic dissipation. A subcritical
“strong field” branch thus exists below the linear stability onset (St. Pierre, 1993) in
addition to the “weak field” branch that bifurcates continuously at the linear dynamo
threshold.

Only the weak field branch has been computed analytically, with different models
(Childress & Soward, 1972; Soward, 1974; Busse, 1975b, 1976). These compu-
tations assume the flow to be laminar with a simple geometry. Consequently, the
saturated magnetic field is governed by the low Reynolds number scaling (2.31),
thus 〈|B|2〉weak ∝ ρν/σL2. The weak field regime may be stable above the linear
threshold (depending on the model) but it becomes unstable for an order one Chan-
drasekhar number (Q = N Re). The system then jumps to the strong field regime.
It is belived that its scaling corresponds to a balance between the Coriolis and the
Lorentz forces (known as the magnetostrophic balance), thus

〈|B|2〉strong ∝ ρΩ/σ . (2.36)

For the Earth, taking ρ ≈ 104 kg m−3, σ ≈ 3 105 S m−1 and L ≈ 3 106 m, gives
Bweak ≈ 5 × 10−2 nT (0.5 μG). This is orders of magnitude too small, whereas the
strong field scaling,

√
ρΩ/σ ≈ 1 mT (10 G), looks better.

A very interesting feature of dynamos generated by rapidly rotating flows is thus
the subcritical nature of the bifurcation. Consequently, the questions related to the
effect of rotation on the linear dynamo threshold are of secondary importance. The
mean magnetic energy of finite amplitude dynamo solutions deserves more attention
and is strongly affected by rotation.

2.5.2. FURTHER COMMENTS ON WEAK
AND STRONG FIELD REGIMES

We first note that the form of |Bweak| given above is oversimplified. The important
aspect is that |Bweak| → 0 if ν → 0 with all other parameters fixed. However, the
length scale in the expression of |Bweak| is likely to involve both L and � ∝ LE1/3,
and thus to be a function of the rotation rate, Ω. But, note that even if we replace L
by �, we obtain

〈|B|2〉weak ∝ ρν

σL2
E−2/3 , (2.37)

thus changing the field by a factor 105. This gives 5 μT (50 mG), which is still too
small for the mean field value in the core of the Earth.
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As a second step, we may try to incorporate the effect of turbulence since we have
already emphasised that it strongly affects the mean magnetic energy. This can
be done phenomenologically, starting from the laminar scaling with length scale
� ∝ LE1/3, and then replacing ν by the turbulent viscosity νT ∝ |uT|�T, where |uT|
is the typical velocity scale on length �T. In the vicinity of the dynamo threshold, we
have Rmc ≈ μ0σ|uT|�T, and we get the turbulent scaling for the magnetic energy
with a length scale

�T ≈ �

(
Rmc

Pm

)1/3

=

(
L

μ0σΩ
Rmc

)1/3

. (2.38)

This gives a more realistic length scale for the diameter of the columns than the
laminar one (a few tenth of kilometers rather than a few tenth of meters). We thus
obtain a third possible scaling of the magnetic energy

〈|B|2〉turb ∝ ρν

σL2

(
Rmc

Pm E2

)1/3

= ρ

(
Ω2

μ0σ4L2
Rmc

)1/3

, (2.39)

giving a more realistic value of the order of a Gauss for the mean field.

We finally note that we obtain the strong field scaling from the weak one by replacing
ν by ΩL2. This only means that, instead of the Stokes term, we have to balance the
additional Coriolis term, 2Ω×u(1), in (2.26) with the Lorentz force. However, such
a scaling does not seem to require a subcritical bifurcation. If the Coriolis term is
the dominant one, weakly nonlinear perturbation theory will lead to

|u(1)| ∝ |B(0)|2
μ0ρΩL

. (2.40)

This gives

〈|B|2〉 ∝ ρΩ

σ
(Rm − Rmc) . (2.41)

We obtain the strong field scaling, but without assuming that there is a balance be-
tween the Lorentz force and the total Coriolis force. Only the Coriolis force related
to the velocity perturbation balances the Lorentz force; this gives the additional term
Rm−Rmc in the expression of the mean magnetic energy. Although this looks fine,
it is not obvious that a perturbative analysis can be worked out that way and we
should be cautious in the absence of an explicit analytical example leading to the
strong field scaling.

2.5.3. SCALINGS OF MAGNETIC ENERGY
USING DIMENSIONAL CONSIDERATIONS

The weak field scaling given by expression (2.37) yields too small field values, but
the turbulent expression (2.39) and the strong field expression (2.36) only differ by
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roughly an order of magnitude in the case of the Earth. Although their expressions
are different, both give possible values of the field for the Earth if we take into
account the qualitative nature of our analysis.

It may be interesting to understand the strong field scaling as follows: we already
noticed that altough magnetic fields exist in a wide range of scales in astrophysics,
their values do not seem to be primarily determined by the size L of astrophysical
objects. As a very rough approximation, assume that 〈|B|2〉 does not depend on L
and also neglect ν since the flow is turbulent (at least at small enough scales). We
are then left with 6 parameters, B = |B|, ρ, μ0, σ, U = |u|, Ω, from which we
can construct two dimensionless numbers, for instance B2/μ0ρU 2 and Rm Ro =
μ0σU2/Ω. We thus get

B2 = μ0ρU 2 g(Rm Ro) . (2.42)

Close to the dynamo threshold, g bifurcates from zero and behaves like Rm Ro −
(Rm Ro)c, with (Rm Ro)c = μ0σU2

c /Ω. Consequently we obtain

B2 ∝ ρΩ

σ
[Rm Ro − (Rm Ro)c] , (2.43)

and we recover the strong field scaling. Note that we expect it to be valid if Ro � 1
(dominant rotation) but for Rm Ro large enough to generate the dynamo. We do not
expect L to be the relevant length scale for the strong field regime, but the smaller
scale Uc/Ω. We observe that the flow is turbulent on this scale at dynamo onset
(U 2

c /νΩ � 1 since Re Ro � Rm Ro).

2.6. SCALING LAWS IN THE LIMIT
OF LARGE Rm AND Re

Finally, we will consider the case of astrophysical flows where both Rm and Re
are very large. Neither laboratory experiments, nor direct numerical simulations
are possible in this range of Rm and Re. The only way is to try to guess scaling
laws for the magnetic field using some simple hypothesis. We thus consider again
the minimum set of parameters, U , L, ρ, ν, μ0, σ. We note that discarding global
rotation is certainly invalid for most astrophysical objects. However, even in the
simplest case of a homogeneous isotropic turbulent flow, with an integral velocity
U in a domain of size L, no clear-cut result exists neither for the dynamo threshold,
nor for the scaling of the magnetic energy. We will shortly review the problem of
the dynamo threshold of a turbulent flow and then discuss possible scalings for the
magnetic energy.
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2.6.1. EFFECT OF TURBULENCE
ON THE DYNAMO THRESHOLD

Taking into account the minimum set of parameters, U , L, ρ, ν, μ0, σ, dimensional
analysis gives for the dynamo threshold Rmc

Rmc = F (Re). (2.44)

For a given geometry and a large scale flow, the unknown function, F , represents
how Rmc depends on the fluid properties. Finding the behaviour of F in the limit
of large Re will show how turbulent fluctuations affect the dynamo threshold. This
is still an open problem, even in the case of a homogeneous isotropic turbulent flow
with zero mean and without helicity. Recent direct numerical simulations show
that Rmc keeps increasing with Re at the highest possible resolution without any
indication of a possible saturation (Schekochihin et al., 2004). However, if one
assumes that the magnetic field is a large scale quantity, i.e. is not affected by the
value of viscosity in the limit of large Re according to the usual phenomenology
of turbulence, we immediately get that, if dynamo action is possible in the limit of
large Re, its threshold is given by Rmc → constant in this limit.

A lot of work has been performed on the determination of Rmc as a function of Re
for turbulent dynamos in the limit of large Re (or small Pm). Eddy–damped quasi–
normal Markovian approximation (EDQNM) closures (see page 90) have predicted
Rmc ≈ 30 for non helical flows (Léorat et al., 1981). The agreement with the
above simple argument is not really surprising since these closures keep only the
large scales. A lot of analytical studies have been also performed, mostly following
Kazantsev’s model (Kazantsev, 1968). Kazantsev considered a random homoge-
neous and isotropic velocity field, δ–correlated in time and with a wave number
spectrum of the form k−p. He showed that for p large enough, generation of a ho-
mogeneous isotropic magnetic field with zero mean value, takes place. This is a nice
model, but its validity is limited to large Pm for which the magnetic field has a much
larger time scale than the velocity field. In this case, assuming that the velocity field
is δ–correlated in time is probably a reasonable approximation. However, Kazant-
sev’s model has been also extrapolated to large Re. Various predictions, Rmc ∝ Re
(Novikov et al., 1983), Rmc → constant ≈ 400 for steep enough velocity spectra
(p > 3/2) and no dynamo otherwise (Rogachevskii and Kleeorin, 1997), or dynamo
for all possible slope of the velocity spectrum in the range 1 < p < 3 (Boldyrev &
Cattaneo, 2004) have been found. These discrepancies result from non rigorous ex-
trapolation of Kazantsev’s model to large Re. The calculation is possible only in the
case of a δ–correlated velocity field in time, and δ(t − t′), which has de dimension
of the inverse of time, should then be replaced by a finite eddy turn-over frequency
in order to describe large Re effects.
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A different problem about turbulent dynamos has been considered more recently.
It concerns the effect of turbulent fluctuations on a dynamo generated by a mean
flow. The problem is to estimate to what extent the dynamo threshold computed
as if the mean flow were acting alone, is shifted by turbulent fluctuations. This
question has been addressed only recently (Fauve & Pétrélis, 2003) and should not
be confused with dynamo generated by random flows with zero mean. It has been
shown that weak turbulent fluctuations do not shift the dynamo threshold of the
mean flow at first order. In addition, in the case of small scale fluctuations, there is
no shift at second order either, if the fluctuations have no helicity. This explains why
the observed dynamo threshold in Karlsruhe and Riga experiments has been found
in good agreement with the one computed as if the mean flow were acting alone, i.e.
neglecting turbulent fluctuations. Recent numerical simulations have shown that in
the presence of a mean flow, Rmc increases with Re at moderate Re, but then seems
to saturate at larger Re (Ponty et al., 2005).

2.6.2. BATCHELOR’S PREDICTIONS
FOR TURBULENT DYNAMO THRESHOLD
AND SATURATION

It may be instructive at this stage to consider the first study on turbulent dynamos
made more than half a century ago by Batchelor (1950). Using a questionable anal-
ogy between the induction and the vorticity equations, he claimed that the dynamo
threshold corresponds to Pm = 1, i.e. Rmc ∝ Re, using our choice of dimensionless
parameters. Pushing the analogy further, he observed that the magnetic field should
be generated mostly at the Kolmogorov scale, �K = LRe−3/4, where the velocity
gradients are the strongest. He then assumed that saturation of the magnetic field
takes place for 〈B2〉/μ0 ∝ ρv2

K = ρU 2/
√

Re, where vK is the velocity increment at
the Kolmogorov scale, v2

K =
√

νε. ε = U3/L is the power per unit mass, cascading
from L to �K in the Kolmogorov description of turbulence.

It is now often claimed that Batchelor’s criterion Pm > 1 for the growth of mag-
netic energy in turbulent flows is incorrect. However, it should be noted that for
homogeneous isotropic turbulence without mean flow and helicity, the weaker cri-
terion Pm > constant or Rmc ∝ Re, is still considered to be a possible scenario
(Schekochihin et al., 2004). It is thus of interest to determine the minimal hypoth-
esis for which Batchelor’s predictions for dynamo onset and saturation are obtained
using dimensional arguments.

First, ε = U 3/L being the power per unit mass available to feed the dynamo, it
may be a wise choice to keep it, instead of U in our minimal set of parameters,
thus becoming B, ρ, ε, L, ν, μ0 and σ. Then, the predictions of Batchelor can
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be found using the following simple requirement: let us consider only the dynamo
eigenmodes that do not depend on L. This is a reasonable requirement, since we
may hope that in a large domain, there exist some class of small scale magnetic
fields which are insensitive to the details of boundary conditions. Then, forgetting L
in our set of parameters, dimensional analysis gives at once Pm = Pmc = constant
for the dynamo threshold, i.e.

Rmc ∝ Re . (2.45)

We also obtain for the mean magnetic energy density

〈B2〉
μ0

= ρ
√

νε G(Pm) =
ρU 2

√
Re

G(Pm) , (2.46)

where G(Pm) is an arbitrary function of Pm. Close to dynamo threshold, we ex-
pect G(Pm) ∝ Pm − Pmc if the bifurcation is supercritical. Only the prefactor
ρU 2/

√
Re of (2.46), which is the kinetic energy at Kolmogorov scale, was consid-

ered by Batchelor and assumed to be in equipartition with magnetic energy. This
class of dynamos being small scale ones, it is not surprising that the inertial range
of turbulence screens the magnetic field from the influence of integral size, thus L
can be forgotten. We emphasise that a necessary condition for Batchelor’s scenario
is that the magnetic field can grow below the Kolmogorov scale, i.e. its dissipative
length �σ should be smaller than �K , thus Pm > 1.

2.6.3. A KOLMOGOROV TYPE SCALING
IN THE LIMIT Re � Rm � Rmc

The simplest argument in the limit where both Rm and Re are very large is, as usual,
to assume that the transport coefficients ν and σ become negligible. We are left with
one dimensionless parameter and

〈B2〉
μ0

∝ ρU 2 . (2.47)

We thus obtain equipartition of energy, an assumption often made in the early dy-
namo literature. The scaling of the mean square magnetic field does not involve the
size L without any further assumption. Note however that this result will not subsist
if global rotation is important. The right hand side of expression (2.47) will then in-
volve an a priori arbitrary function of the Rossby number, thus leading to a possible
dependence of B on Ω and L.

Assuming that the above argument is correct means that the magnetic field is a large
scale quantity in the phenomenology of turbulence. There is obviously a strong
discrepancy between (2.47) and (2.46). These two laws are the upper and lower
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limits of a continuous family of scalings that are obtained by balancing the magnetic
energy with the kinetic energy at one particular length scale within the Kolmogorov
spectrum. It is not known if one of them is selected by turbulent dynamos.

We finally consider the case Pm � 1 i.e. Re � Rm. We know from the Karlsruhe
and Riga experiments that dynamo action is possible in this range above a moderate
value of Rmc provided that the mean flow is appropriately chosen. As said above,
the problem is still open in the absence of mean flow, although some models predict
a much larger, but finite, Rmc in the limit of large Re.

Assuming that a dynamo is generated, we want to give a possible guess for the
power spectrum |B̂|2 of the magnetic field as a function of the wave number k and
the parameters ρ, ε, L, ν, μ0 and σ. Since Re � Rm � Rmc, the dissipative lengths
are such that �K � �σ � L. For k in the inertial range, i.e. k�σ � 1 � kL, we
may use a Kolmogorov type of argument and discard L, σ and ν. Then, only one
dimensionless parameter is left and, not too surprisingly, we get

|B̂|2 ∝ μ0ρ ε2/3 k−5/3 . (2.48)

This is only one possibility among many others proposed for MHD turbulent spectra
within the inertial range, but it is the simplest. Integrating over k obviously gives
equipartition law (2.47) for the magnetic energy. It is now interesting to evaluate
Ohmic dissipation. Its dominant part comes from the current density at scale �σ. We
have

j2

σ
=

1

σ

∫
|̂j|2 dk ∝ 1

μ2
0σ

∫
k2|B̂|2 dk ∝ ρ

μ0σ
ε2/3 �2/3

σ ∝ ρ
U 3

L
. (2.49)

We thus find that Ohmic dissipation is proportional to the total available power,
which corresponds to some kind of optimum scaling law for Ohmic dissipation.
However, this does not give any indication that this regime is achieved. The dis-
crepancies between plausible laws given in this section show that the problem of
turbulent dynamos still deserves a lot of studies.

2.7. NONLINEAR EFFECTS
IN MEAN FIELD DYNAMO THEORY

Let us now consider the limit of large magnetic Reynolds number Rm. The ma-
jority of research into astrophysical dynamos (see Chapter 6 and Chapter 7) has
been performed within the framework of mean field electrodynamics. It can also
be a useful approach in geodynamo models (see Section 4.5.1), but here there has
also been much recent work on solving the full three dimensional equations (see
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Section 4.5.3). Mean field electrodynamics, conceived in the 1960’s by Steenbeck,
Krause and Rädler (see Krause & Rädler, 1980 for full references), is an extremely
elegant theory – and is, in many ways, extremely successful. By judicious choice of
the various parameters in the theory, it is possible to model a vast range of dynamo-

however always be borne in mind that mean field electrodynamics is a theory of
MHD turbulence, and, as in all theories of turbulence (magnetic or non-magnetic),
it involves approximations and assumptions. The aim of this chapter is to discuss
the various approaches that have been taken towards understanding the nonlinear
behaviour of mean field dynamos, concentrating mainly on astrophysical modelling
(i.e. high values of the Reynolds numbers Rm and Re). Of particular significance
is that the power of present-day computers is now allowing realistic simulations
of turbulence – though by no means at the extreme parameter values that pertain
in astrophysical situations – and that it is therefore becoming possible to compare
theoretical predictions with results from numerical simulations.

The aim of mean field electrodynamics is to provide a mathematical theory for the
evolution of magnetic fields on scales large compared with that of the driving turbu-
lent velocity field. Its formulation has already been described in depth in Section 1.5,
and so will not be reproduced in detail here. There are though two key points to note,
namely:

(i) that the formulation is essentially linear – being based on the induction equa-
tion for given flow statistics, and

(ii) that, often, progress is possible only for the case of low Rm. Only in this case
is it possible to make any rigorous statement about the relationship between
the fluctuating and mean magnetic fields.

Typically though, astrophysical plasmas are both nonlinear in their behaviour and
possess extremely high values of Rm [O(1011) in the solar convection zone, for

and attendant consequences of mean field electrodynamics can be carried over into
the regime of astrophysical relevance.

There are essentially three ways of making progress with understanding the nonlin-
ear evolution of a large-scale magnetic field in a turbulent flow:

(i) through the incorporation into the mean field formalism of plausible nonlin-
earities, based on physical arguments;

(ii) via other MHD turbulence theories, which put the induction equation and mo-
mentum equation on an equal footing;
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(iii) via direct numerical simulations of the full governing MHD equations.

In this section, we shall consider each of these areas in turn, and try to give a picture
of just where the subject stands at present – to discuss which are the areas of agree-
ment, and which are those of contention. It is intended as an introductory text; it is,
deliberately, far from exhaustive, and the work we shall describe has been chosen
for illustrative purposes. A much fuller list of references can be found, for example,
in the review of galactic magnetic fields by Beck et al. (1996) and the recent review
of the solar dynamo by Ossendrijver (2003).

For turbulent MHD flows there are two important nonlinearities in the momentum
equation. One is the inertial (u · ∇)u term – the crucial nonlinearity in hydrody-
namic turbulence, responsible for energy transfer between different spatial scales;
the other is the Lorentz force (j×B), which provides the back-reaction of the mag-
netic field on the velocity field. In the following sections, we shall explain how these
nonlinearities are accounted for in the three approaches outlined above.

2.7.1. NONLINEAR EFFECTS IN THE MEAN FIELD FORMALISM

THE INCORPORATION OF PLAUSIBLE NONLINEARITIES

As described in Section 1.5, the standard formulation of mean field electrodynamics
leads to a mean induction equation in which the large-scale field evolves under the
influence of the tensors αij and βijk, and a large-scale flow (or differential rotation,
ω). The simplest means of introducing nonlinear effects into the theory – which are,
of course, necessary to prevent unlimited growth of the magnetic field – is to modify
one or more of αij , βijk or ω in a manner that reflects the underlying physics. It
is though important to point out that such modifications typically do not arise from
some self-consistent theory, but are merely physically plausible.

For simplicity, let us for the moment consider the case when αij and βijk are isotropic
tensors, namely αij = αδij and βijk = βεijk; we need then concern ourselves only
with the pseudo-scalar α and the scalar β. The induction equation for the mean
magnetic field B0 then takes the form (see Section 1.5.2):

∂tB0 = ∇ × (U × B0) + ∇ × (αB0) + ∇ × [(η + β)∇ × B0] . (2.50)

At low values of Rm one may interpret the α–effect in terms of the physical picture
first put forward by Parker (1955), of rising and twisting loops of field giving rise to a
mean current anti-parallel to the large-scale field. On physical grounds it is entirely
reasonable to argue that this process becomes less effective as the field strength
increases – the Lorentz force resisting the tendency to twist field lines – and that
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therefore α should be a monotonically decreasing function of the large-scale field
B0. The most widely used formulation is that proposed by Jepps (1975), with α
taking the form

α =
α0

1 + B2
0/B2

, (2.51)

where α0 represents the kinematic value of α and B2 represents some reference
magnetic energy. At high values of Rm there is no clear physical picture of even the
kinematic (linear) α–effect, and thus it is not at all surprising that the precise nature
of the Lorentz force is much harder to understand. Formulae of the form (2.51) are
commonly advanced, but there is considerable controversy over which value of B is
appropriate.

If α is “quenched” in the manner suggested by expression (2.51) one may argue
that the turbulent diffusivity β should be similarly reduced, the general argument
being that a stronger field resists shredding and hence that the process of turbulent
diffusion is inhibited. Dynamo models therefore sometimes adopt a prescription for
β of the form

β =
β0

1 + B2
0/B2

, (2.52)

where the reference energy B2 in expression (2.52) may – or may not – take the same
value as in (2.51). There is, of course, a tremendous amount of physics hidden away
in the formulae (2.51) and (2.52), and we shall return to this issue in later sections;
the aim here however is simply to discuss the general nature of the nonlinearities
that are typically incorporated into mean field electrodynamics, and to examine their
consequences.

An alternative to equation (2.51) is to formulate a separate equation for α – a so-
called dynamic α–effect. Schmalz & Stix (1991) postulate that α may be expressed
as the difference between a kinematic and dynamic component, α = αk −αd, where
αd obeys the relation

∂tαd = D(αd) + F(AB) , (2.53)

where D represents a damping term and the function F(AB) is chosen to represent
the quenching of the α–effect by the Lorentz force, whilst maintaining the pseudo-
scalar nature of α. Yet another possible approach is that of Yoshimura (1978), who
argues that the reaction of the field on the driving flow does not occur instanta-
neously, but only after a certain time td has elapsed. This is built into his formulation
of the mean field equations through specifying that α depends not on the magnetic
field at the present time t, but instead on the magnetic field at an earlier time t − td.
Such formulations, of either a dynamic α–effect or an α–effect that depends on the
field at an earlier time, can be justified through rather non-specific physical argu-
ments, as indeed can (2.51); they are though all somewhat arbitrary.
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The Lorentz force, via the momentum equation, of course acts not only on the small-
scale turbulence – and hence influences the transport coefficients α and β – but also
on the large-scale flow (i.e. on the differential rotation). This can be taken into
account through a simple ω–quenching model of the form

ω =
ω0

1 + B2
0/B2

, (2.54)

based on fairly non-specific arguments that the stress exerted by the small-scale
magnetic field inhibits the differential rotation. The large-scale magnetic field also
has a direct dynamic effect on the large-scale flow; this process, first investigated by
Malkus & Proctor (1975), is accounted for by an additional equation for the large-
scale velocity.

A third, and rather different, mechanism of dynamo saturation is that due to loss
of flux from the region of field generation. This is typically ascribed to an upward
escape of flux via magnetic buoyancy, a consequence of the magnetic pressure sup-
porting more gas than would be possible in its absence (see, for example, the review

field, and so the simplest prescription is to add a term of the form −B3 to the right
hand side of the mean induction equation (2.50). Again it should be stressed that
although this is a reasonable parametrisation, the true physics of magnetic buoy-
ancy instabilities is considerably more complex (see, for example, Hughes, 1991).
Indeed, the real picture may be quite subtle; magnetic buoyancy instabilities in a
rotating frame – which can lead to an upward transport of magnetic flux – yield he-
lical motions which may, through an α–effect, be conducive to field generation (see
Moffatt, 1978; Thelen, 2000a,b). So magnetic buoyancy may play a role not only in
the loss of field, but also, indirectly, in its generation.

NONLINEAR MODELS

In modelling a stellar dynamo, the obvious interpretation of the averaging process in
the mean-field formulation is as an azimuthal average, leading, in spherical geom-
etry, to equations dependent on radius r, meridional angle θ and time t. Although
less daunting than the full, three-dimensional MHD equations, solution of the ax-
isymmetric mean field equations is still a non-trivial task. It can often therefore
be instructive to consider further simplifications. The most drastic is to reduce the
governing partial differential equations in r, θ and t to a low-order set of ordinary
differential equations in t. One of the earliest such models is that of Weiss, Catta-
neo & Jones (1984) who, via a severe truncation of a modal expansion of the mean
induction and momentum equations, derived the following seventh order system,
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which may be regarded as a complex generalisation of the Lorenz equations:

Ȧ = 2D(1 + κ|B|2)−1B − A , (2.55a)
Ḃ = i(1 + ω0)A − 1

2
i A∗ω − (1 + λ|B|2)B , (2.55b)

ω̇0 = 1
2
i (A∗B − AB∗) − ν0ω0 , (2.55c)

ω̇ = −iAB − νω , (2.55d)

where A and B represent the (complex) poloidal flux function and toroidal field, ω0

(real) and ω (complex) represent the spatially uniform and spatially varying com-
ponents of the differential rotation, ν and ν0 are real constants related to an eddy
viscosity. There are three forms of nonlinearity in the above set of equations; α–
quenching in the A equation, represented through a term of the form (2.51) (κ being
a positive real constant), a buoyancy loss term in the B equation (λ a positive real
constant), and the feedback of the Lorentz force on the differential rotation in the ω0

and ω equations.

Weiss et al. (1984) concentrated on the case of κ = λ = 0, for which the nonlin-
ear feedback acts only on the differential rotation, and found that solutions of the
seventh order system fall into two classes, depending on whether the nonlinear sat-
uration is dominated by ω0 or ω. The former can be accommodated within the fifth
order system obtained by letting ν → ∞, the latter within the sixth order system
formed by letting ν0 → ∞. For D > 1 there is an exact nonlinear solution of the
seventh order system, corresponding to dynamo waves. For the fifth order system
this solution remains stable for all D; for the sixth order system, however, it loses
stability and more mathematically interesting behaviour ensues. As D increases,
successive Hopf bifurcations, leading to quasi-periodic behaviour, are followed by
a period-doubling cascade to chaos. The magnetic field in the chaotic regime has
epochs of cyclic activity interspersed with quiescent episodes during which the field
amplitude is reduced and varies on a much slower timescale (see Figure 2.1); such
behaviour is, of course, suggestive of the time trace of the Sun’s magnetic field
measured, for example, by the sunspot number.

The natural extension to low-order ODE models – which are local in nature – is to
incorporate full spatial variation in one dimension, the most astrophysically relevant
way of achieving this being to consider thin-shell dynamos, in which averaging over
the radial direction leads to a set of PDEs in θ and t. Such models naturally allow,
for example, interactions between the fields in each hemisphere. This approach was
adopted by Belvedere, Pidatella & Proctor (1990) who considered a model in which
the only manifestation of the Lorentz force is to modify the large-scale velocity. In-
creases in the dynamo number lead to solutions of increasing spatial and temporal
complexity, from simple periodic solutions to quasi-periodic and “pulsed” solutions
in which relatively long periods of stasis are interrupted by interludes of cyclic be-
haviour. The model of Belvedere et al. (1990) also allows for the possibility of
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Figure 2.1 - Aperiodic oscillations of the sixth-order system [derived from (2.55a)–
(2.55d) with ν0 → ∞], modulated to give episodes of reduced activity; B1(t) (the
real part of B) for (a) D = 8 and (b) D = 16 (from Weiss et al., 1984).

multiple stable solutions for the same parameter values.

Jennings & Weiss (1991) also considered a one-dimensional model, “flattened” into
Cartesian geometry (θ → x), governed by the equations

∂tA =
D cos x

1 + τB2
B + ∂xxA , ∂tB =

sin x

1 + κB2
∂xA + ∂xxB − λB3 , (2.56a,b)

which may be regarded as a nonlinear modification to equations (1.112a,b). Their
model differs from that of Belvedere et al. (1990) not just in the geometry, but also
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Figure 2.2 - Bifurcation diagram for the system (2.56a,b) with κ = λ, τ = 0 and
D < 0; d, q and m refer to dipole, quadrupole and mixed mode solutions, s to steady
solutions. Local and global bifurcations are indicated by • and ◦ respectively (from
Jennings & Weiss, 1991).

through a different choice of nonlinearities; equations (2.56a,b) contain terms rep-
resenting α- and ω–quenching and flux loss by magnetic buoyancy, but no direct
feedback on the large-scale velocity. Jennings & Weiss (1991) were particularly in-
terested in the phenomenon of symmetry-breaking between the northern and south-
ern hemispheres; via a fairly low-order truncation of equations (2.56a,b), which en-
abled them to locate both stable and unstable solutions, they were able to construct
the bifurcation diagram demonstrating the transitions between dipole, quadrupole
and mixed modes. Figure 2.2 shows the bifurcation diagram for the case of κ = λ,
τ = 0. Of significance is the existence of different types of stable solution (e.g.
dipole and quadrupole) at the same value of the dynamo number D.

Two-dimensional models, in which the variables depend on r and θ (and time) have
also received considerable attention, with investigation of all the different types of
nonlinearity discussed above (see, for example, Covas et al., 1998, who performed
a comparison between algebraic and dynamic α–quenching). Just as for the models
with zero or one spatial dimension a wide variety of behaviour can be found through
the incorporation of different nonlinearities.
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Equation (2.50), with U, α, β and η dependent on (at most) r, θ and t, clearly sup-
ports non-axisymmetric solutions – with B proportional to exp(imφ) in the linear
regime. Furthermore it may even be the case that the mode of maximum growth rate
is non-axisymmetric. However, one has to exercise a certain amount of caution over
the interpretation of non-axisymmetric solutions of (2.50). If the mean-field proce-
dure is that of averaging over the azimuthal angle then – for logical consistency – the
magnetic field in equation (2.50) must also be axisymmetric. Similarly, an ensem-
ble average – itself somewhat hard to justify for any isolated stellar object – leads
to a reduction in the number of spatial dimensions. One other interpretation is that
the average represents a filtering between large scales (m < m∗, say, for some m∗)
and small scales (m ≥ m∗) – this allows for the possibility of non-axisymmetric
modes of equation (2.50), but begs the question as to why α etc. should, in this
case, not depend on all m < m∗. Consequently the most consistent interpretation of
three-dimensional (non-axisymmetric) solutions of equation (2.50) is as some sort
of temporal average, where ∂t represents the rate of change over timescales long
compared to that involved in the averaging procedure.

THE ROBUSTNESS OF NONLINEAR MODELS

Through the choice of the various nonlinearities discussed above, it is possible to
obtain a considerable range of solutions to the mean induction equation (2.50), with
differing spatial symmetries and a range of temporal complexity, an excellent agree-
ment being possible with observed cosmical fields. The different types of possible
solution and their relation to stellar magnetic fields are discussed further in Chap-
ter 6. However, one has to exercise a certain degree of caution in interpreting the
results of mean field models. It is well known that the dynamics of low-order sys-
tems may be critically dependent on the severe truncation performed to obtain them,
and that, for example, chaotic behaviour may disappear in corresponding higher-
order systems. Schmalz & Stix (1991) found such a phenomenon in their dynamic
α models. Furthermore, the qualitative behaviour may be sensitively dependent on
the precise form of the nonlinearity chosen. Covas et al. (1997) re-examined the
Schmalz & Stix model by considering different functional forms of the driving term
for αd in (2.53), and found that significant changes in the chaotic nature of the so-
lutions could result. Tobias (1998) has examined the dependence of dynamo cycle
periods on the various nonlinearities that may be included in an interface dynamo
model (described in more detail in Section 6.4) and, from the time series of the
various models, concluded that it is difficult to discriminate between different non-
linearities.
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2.7.2. MHD TURBULENCE THEORIES

The essential principle behind the models discussed in Section 2.7.1 is that the mean
induction equation (2.50) is pre-eminent, and that nonlinear effects can be incorpo-
rated either through parametrisations of the form (2.51) or through auxiliary equa-
tions for α or ω. There are clearly advantages to such an approach; the full horrors
of the momentum equation are avoided and, importantly, it appears that most astro-
physical dynamos can, at some level, be modelled in this way. Clearly though, there
is always the worry that some of the essential physics of the problem, contained in
the momentum equation, is missing. The aim of this section therefore is to review
some of the attempts that have been made to model the turbulent dynamo problem
through treating the induction and momentum equations on a more equal footing.

One approach is to apply the ideas of mean field averaging not just to the induction
equation but also to the momentum equation, on the grounds that the same turbu-
lence occurs in both. On neglecting the magnetic field for the moment, and splitting
the velocity field into its mean and fluctuating components, U = U0 + u, the (di-
mensionless) mean momentum equation for an incompressible flow may be written
as

∂tU0 + (U0 · ∇)U0 = −∇P − ∇ · 〈uu〉 + Re−1ΔU0, (2.57)

where the effects of the turbulence are contained in the Reynolds stress tensor

Qij = 〈uiuj〉. (2.58)

Just as in classical mean field electrodynamics, in which the aim is to express the
mean EMF E = 〈u × b〉 in terms simply of the mean magnetic field, the aim here
is to express the tensor Qij in terms of the mean velocity field. This is, however, an
even more daunting task than for the induction equation; whereas, at least for weak
fields, the latter represents a problem linear in the magnetic field, the momentum
equation for fully turbulent flows is inherently nonlinear in the velocity field. The
closure of equation (2.57) is thus fraught with even more uncertainties than that of
(2.50).

If, however, the assumption is made that Qij depends only linearly on the mean part
of the velocity field and its first spatial derivatives, then the hydrodynamic analogue
of equation (1.102) of Section 1.5.2 may be expressed as

Qij = Lijk U0k − Nijkl ∂lU0k. (2.59)

Furthermore, if the mean flow takes the form solely of a differential rotation, i.e.
U0 = sωeφ, then (2.59) takes the form

Qij = Λijk ωk − Nijkl ∂l(ωeφ × er)k. (2.60)
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The tensor Λijk must be symmetric in i and j, and hence anisotropic; the first term
on the right hand side of (2.60) – the so-called Λ–effect – therefore represents the
contribution towards the differential rotation arising from the interaction between
global rotation and anisotropic turbulence (Rüdiger, 1989). The second term denotes
the contribution stemming from turbulent diffusivity (analogous to β for the mean
induction equation). Of course, just as for α and β, there are no rigorous theories
available to calculate Λijk and Nijkl; these must come from physically plausible,
though to some degree arbitrary, considerations. Mean field dynamos involving the
Λ–effect, but with the only nonlinearity that of the large-scale magnetic field on
the differential rotation, have been considered by, for example, Brandenburg et al.
(1991).

The magnetic field though may also influence the differential rotation through mod-
ifying, or quenching, the Λ–effect, the turbulent driver of the differential rotation. In
the presence of a small-scale magnetic field b the total stress tensor becomes

Qtot
ij = 〈uiuj〉 − 〈bibj〉. (2.61)

Formal expressions for Qtot
ij have been calculated, for a particular turbulence model,

by Kitchatinov, Rüdiger & Küker (1994), who also consider the consequences of
such a nonlinear Λ–effect for a simple one-dimensional dynamo model. Küker, Arlt
& Rüdiger (1999) considered an axisymmetric dynamo model with three different
manifestations of the Lorentz force; the Malkus-Proctor mechanism, α–quenching
and Λ–quenching. They found that α–quenching leads to temporally periodic solu-
tions, whereas the Malkus-Proctor mechanism and Λ–quenching both yield compli-
cated time series with irregular grand minima.

The approach above, couched solely in terms of mean quantities, may be thought of
as a one-point closure model. To study small-scale properties for which correlation
functions are of crucial importance it is however necessary to consider higher-order
moments of the governing equations. Suppose the system of governing equations is
written symbolically as

dui

dt
+ νiui =

∑
jk

Mijkujuk , (2.62)

where the {ui} represent the variables of the system (e.g. {U,B} for incompressible
MHD), the νi are the dissipation coefficients, and Mijk are the nonlinear coupling
coefficients (no implicit summation convention is used here). Then, the equation for
the two–point correlation function takes the form

d

dt
〈uiuj〉 + νi〈uiuj〉 =

∑
mn

(Mimn〈ujumun〉 + Mjmn〈uiumun〉) , (2.63)
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which clearly involves the triple-correlation function. Continuing in this vein leads
to an infinite hierarchy of moment equations; to make progress it is therefore nec-
essary somehow to close the system. One of the infinite number of ways in which
this may be done – leading to the only MHD turbulence model that has been used
to address the dynamo problem – is to adopt what is known as the eddy–damped
quasi–normal Markovian approximation (EDQNM), formulated for hydrodynam-
ics by Orszag (1970) and extended to MHD by Pouquet, Frisch & Léorat (1976).
Roughly speaking, closure is achieved by assuming that the joint probability distri-
butions are close to normal, allowing the neglect of all cumulants of order greater
than three. An eddy damping, the choice of which allows considerable freedom, is
then introduced to determine the decay of the triple correlation, and hence close the
system.

From the point of view of mean field dynamo theory, the key result of Pouquet et al.
(1976) is the derivation of an expression for α of the form

α = −τc

3

(
〈u · ∇ × u〉 − 〈j · b〉

ρ

)
, (2.64)

where τc is a typical coherence time of the hydrodynamic turbulence. The result
(2.64) provides an extremely appealing description of the saturation of the α–effect,
suggesting that the generation of field through kinetic helicity (〈u · ∇ × u〉) is nul-
lified through the manifestation of the Lorentz force through small scale current
helicity (〈j · b〉); as such it has been widely used in studies of nonlinear dynamo
action. It is however worth bearing in mind that this is a result born of a number
of approximations and assumptions, and it is therefore important to discuss the im-
plications of these. The result may be regarded, in some sense, as the nonlinear
extension of the quasi-linear result (1.107), a result that follows from approximating
integrals of the form∫ ∞

0

〈u(x, t) · ∇ × u(x, t − τ)〉 dτ by τc〈u · ∇ × u〉. (2.65)

However, the nature of the correlation time in MHD turbulence, including its depen-
dence on Rm and B0, remains an important unanswered question (discussed further
in the following section). The fact that it is essentially a free parameter of the prob-
lem is thus a weakness of the model.

It is also important to consider how the result (2.64) fits in with the classical α–effect
picture, as described in Section 1.5.2. The quasi-linear approximation leads, solely
from the induction equation for the fluctuating field, to the expression (1.107) for α:

α = −τc

3
〈u · ∇ × u〉. (2.66)

However, as discussed by Proctor (2003), the fact that the induction equation re-
mains linear in the magnetic field – even though in the dynamic regime the flow
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is of course affected by the field – leads formally – even in the nonlinear regime –
again to the result (2.66). Any non-linearity will simply be manifested in a change
to the kinetic helicity distribution. So what is the origin of the second term in (2.64)?
If, instead of the classical picture of b being solely dependent on B0, we consider
the introduction of a large-scale field B0 into a pre-existing state of MHD turbulence
with a small-scale velocity u and a small-scale field b – leading to further pertur-
bations u′ and b′ – then, under the quasi-linear approximation, the EMF may be
approximated by

E ≈ 〈u × b′〉 + 〈u′ × b〉. (2.67)

Now, using both the induction and momentum equations for the fluctuating quan-
tities, the result (2.64) follows (Pouquet et al. 1976; Kleeorin & Ruzmaikin, 1982;
Gruzinov & Diamond 1994, 1996; Proctor, 2003). It is though vitally important to
be clear about the exact meanings of u and b in this formula.

To obtain a further insight into the α–effect it is instructive to write B = ∇ × A
and to consider the ideal topological invariant χ = 〈A · B〉, the magnetic helicity
(Gruzinov & Diamond, 1994, 1996). From the induction equation, the equations for
a and b, the small-scale fluctuations of the vector potential and the magnetic field,
are

∂ta = (u × B0) + (u × b) − ∇χ − η∇ × b , (2.68a)
∂tb = ∇ × (u × B0) + ∇ × (u × b) + ηΔb . (2.68b)

Forming the scalar product of (2.68a) with b = ∇ × a, (2.68b) with a, adding, and
adopting boundary conditions such that the ensuing surface terms vanish, yields the
following equation:

1

2

d

dt
〈a · b〉 = −B0 · E − η 〈b · ∇ × b〉 (2.69)

[see (1.109)], where the angle brackets denote a spatial average and E = 〈u × b〉.
For the case of stationary turbulence we may average over time to obtain

B0 · E = −η μ0 〈j · b〉 . (2.70)

Consequently we have the exact result, dependent only on stationarity and suitable
boundary conditions, that, for isotropic turbulence

α = − η μ0

3 B2
0

〈j · b〉 , (2.71)

[cf. (1.110)], where b is the entire small-scale magnetic field and where angle brack-
ets here are to be understood as denoting a space and time average. The result (2.71)
though involves the small-scale field and current, whereas a true mean field theory
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must involve only large-scale variables. One approach to eliminating the small-scale
behaviour is to equate the two expressions for 〈j · b〉 from (2.64) and (2.71) (Gruzi-
nov & Diamond, 1994), thereby leading to what is known as the formula for strong
(or even “catastrophic”) suppression,

α =
α0

1 + Rm (B2
0/μ0 ρ)/〈u2〉 . (2.72)

It is though worth reiterating the different natures of the expressions (2.71) and
(2.64). In expression (2.71) – which is exact – b refers to the total small-scale field,
whereas in (2.64) – which is only an approximate result – it refers to a pre-existing
small-scale field.

The astrophysical consequences of (2.72), if it is correct, are highly significant in
that it implies that the α–effect ceases to be effective at an extremely low value
of the large-scale magnetic field (see Vainshtein & Cattaneo, 1992). This issue,
which remains very controversial, is now also being addressed through numerical
simulations, described in the following section. We shall therefore delay further
discussion of (2.72) to the following section.

2.7.3. DIRECT NUMERICAL SIMULATIONS

It is worth stating, from the outset, that direct numerical simulations cannot provide
a complete answer to the astrophysical dynamo problem; it is simply not possible to
solve the governing equations at the extreme parameter values (Re 	 1, Rm 	 1)
that pertain astrophysically. With the most powerful computational facilities now
available, it is feasible to simulate flows with Re ≈ Rm ≈ 103 and that possess
a reasonable scale separation between that of the driving flow and the largest scale
available to the magnetic field. However, given that spatial resolution increases, in
each direction, as the inverse square root of the dissipation, and also that the time
step decreases in inverse proportion to the resolution, a comparable calculation with
Re ≈ Rm ≈ 109 requires 1012 times as many operations. Even with a doubling
in computer speed every few years we are clearly nowhere near being able to solve
the full problem merely by what Roberts & Soward (1992) term the “brute force”
approach. Indeed, even a truly realistic simulation of a physical process does not,
of itself, constitute a true understanding of the process. That said, a computational
approach, properly used, can help us to gain an understanding of nonlinear MHD
processes, can verify – or refute – existing theories, and can help point the way to
new theoretical approaches.

The most ambitious global models of stellar dynamos remain those of Glatzmaier
(1985a,b), who investigated self-consistent (i.e. nonlinear) dynamo action driven by
thermal convection in a rotating spherical shell. Glatzmaier considered the case of an
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anelastic gas, thereby filtering out short timescale sound waves whilst retaining the
effects of a large density stratification, following on from earlier Boussinesq mod-
els of Gilman & Miller (1981) and Gilman (1983). Glatzmaier’s models employed
subgrid-scale eddy diffusivities, but otherwise contained essentially no parametrisa-
tion. In particular, there was no freedom to specify α or ω; these simply emerged, as
properties of the convective motions, through a self-consistent solution of the gov-
erning equations. Glatzmaier (1985a) considered the case of an everywhere supera-
diabatic atmosphere; for the parameter values adopted he found that the convection
took the form of north-south rolls, as suggested by the Proudman–Taylor theorem
for rapidly rotating fluids, with the angular velocity decreasing with increasing lat-
itude at the surface. The magnetic field was antisymmetric about the equator (as
for the Sun) but, unlike the Sun, was found to propagate towards the poles. This is
sometimes viewed as a failure of the model, in that it differs in this respect from the
observed solar field. It is though, as discussed earlier, not practicable to model the
Sun in terms of adopting realistic parameter values, and it is (even now) premature
to expect self-consistent models that reproduce solar features. The simulations of
Glatzmaier represent an extremely important success, demonstrating conclusively
the feasibility of a nonlinear dynamo with minimum parametrisation (see also the
discussion in Section 4.5). Glatzmaier (1985b) did address the question of the direc-
tion of propagation of the field, by undertaking a further calculation with a different
convective stratification, with the outer two thirds (in radius) superadiabatic and the
inner third subadiabatic, the premise being that the helicity and differential rota-
tion in the region of overshooting convection would be such as to drive the dynamo
waves towards the equator. The results suggested that this may be the case, but were
inconclusive, suffering from the lack of numerical resolution in the inner half of the
shell.

Since the studies by Glatzmaier – and in contrast to the path pursued in modelling
the geodynamo – attention has shifted away from direct numerical simulations of the
entire global dynamo process in a spherical geometry, either towards local, Carte-
sian models of nonlinear dynamos, or towards “stripped down” simulations aimed at
understanding isolated specific aspects of the dynamo mechanism. The former av-
enue has been pursued by Brandenburg and his co-workers, who have investigated
both convectively driven dynamos (Brandenburg et al. 1996) and dynamos driven by
helical forcing (Brandenburg 2001). The latter approach has been aimed principally
at obtaining a more complete understanding of the nonlinear behaviour of the trans-
port coefficients α and β in a turbulent flow at high Rm; for example, does formula
(2.51) correctly describe the saturation of α and, if so, what is the appropriate value
for B2 at which the energy of the large-scale field becomes significant? Cattaneo
& Vainshtein (1991) considered the (guaranteed) decay of a co-planar, large-scale
field in two-dimensional turbulence, in order to calculate the dependence of the tur-
bulent diffusivity on the strength of the large-scale field B0. With Rm = O(102),
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and by varying B0, they found that the decay of the field could be considered to be
kinematic only for extremely weak fields, with B2

0
<∼ 〈u2〉/Rm, and that the tur-

bulent magnetic diffusion time for a large-scale field of characteristic length L is
well-represented by the formula

τT

(
= L2/β

)
=

L2

η

(
1

Rm
+

1

M̂2 + 1

)
, (2.73)

where M̂ is the Alfvénic Mach number, the ratio of the flow speed to the Alfvén
speed of the large-scale field. The key physical process behind the suppression of
turbulent diffusion is that the field becomes strong (i.e. of equipartition strength) on
the scale of the flow whilst remaining weak at large scale, with 〈|B|2〉 ≈ RmB2

0 .
The strong small-scale field resists the rapid deformation necessary for turbulent
diffusion, which is thus inhibited. Alternatively, one may consider the problem from
a Lagrangian perspective, based on the ideas of Taylor (1921). Turbulent diffusion
is achieved by the exponential separation of fluid particles trajectories; the presence
of a strong small-scale field provides the fluid particle with a long-term “memory”
– their separation is inhibited and the diffusion reduced (Cattaneo, 1994). Clearly
any correlation time will be dependent on the magnetic field, and this needs to be
brought out in models of MHD turbulence.

The two-dimensional diffusion problem is though rather special, for a number of rea-
sons. Geometrically, there is no possibility of interchange motions, which can bring
together oppositely directed field lines without bending them – this suggests that
any suppression of diffusion for three-dimensional flows should be weaker. Further-
more, in two dimensions, field decay is guaranteed [Zeldovich’s (1957) theorem],
following from the fact that one component of the magnetic potential satisfies the
heat equation. The question of the suppression (if any) of the turbulent magnetic
diffusivity for general, three-dimensional flows remains completely open. It is an
extremely difficult question to attack numerically, for two reasons. One is simply a
question of computational resources, in that one needs to accommodate a magnetic
field that varies on a large scale whilst still resolving the small-scale turbulence. The
second, and more difficult, problem is conceptual, arising from the fact that turbu-
lent three-dimensional flows are almost certainly small-scale dynamos at sufficiently
high Rm and, for flows lacking reflectional symmetry, may be large-scale dynamos
also. It is thus not a straightforward matter to determine how the role of β should be
disentangled from that of field amplification.

Calculating the α–effect numerically is more clear-cut since it can be determined
unambiguously by measuring the correlation in a turbulent flow between an imposed
uniform magnetic field and the resulting EMF, 〈u × b〉. Such calculations are not
dynamo simulations – since they have an imposed field with non-zero mean – but are
aimed at addressing the one particular issue of the nonlinear nature of the α–effect.
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Cattaneo & Hughes (1996) and Cattaneo, Hughes & Thelen (2002) have investigated
forced helical, incompressible turbulence, in the presence of an imposed mean field
B0, in order to measure the dependence of α on Rm and B0. As for the case of
β in two dimensions, α is quenched at very weak values of B0, the results being
approximated by a formula of the form

α =
α0

1 + Rmγ (B2
0/μ0 ρ)/〈u2〉 , (2.74)

for some O(1) constant γ (see Figure 2.3). The physics behind the suppression of α
can be understood, at least in a rather general manner, in an analogous fashion to the
suppression of β; namely that a weak large-scale field gives rise, for large Rm, to a
very strong small-scale field which inhibits α. It should be pointed out that this is
a more subtle issue than simply a reduction in kinetic helicity; Cattaneo & Hughes
(1996) showed that a suppression of α by a factor of order Rm is achieved with
only a halving of the kinetic helicity. Clearly, as for diffusion, it must be tied to the
ideas of the fluid particles becoming imbued with a “memory”. However, the micro-
physics underlying α at high Rm is not at all well understood, even in the kinematic
regime. A formal analysis of the case of perfect electrical conductivity (Rm infinite)
leads to the following expression for α in terms of the Lagrangian displacement ξ
(Moffatt, 1974):

α = − d

dt
〈ξ · ∇ × ξ〉, (2.75)

and one may speculate that a reduction in the separation of fluid trajectories will lead
to a reduction in the average in (2.75). There are though doubts as to the validity
of (2.75) even in the kinematic regime for large but finite Rm and certainly, at the
moment, there is no proper theory of the suppression of α when Rm is large. The
whole issue of the nonlinear behaviour of the transport coefficients of mean field
theory is discussed at much greater length in the recent review by Diamond, Hughes
& Kim (2004).

As mentioned above, the result (2.74), assuming that it carries through to the as-
trophysical Rm regime, poses a severe problem for the generation of large-scale
fields, in that it implies that the α–effect ceases to be effective once the energy of
the large-scale field becomes comparable with the equipartition energy divided by
Rm. As such, the result has been criticised, although in a somewhat time-dependent
and self-contradictory fashion. Field, Blackman & Chou (1999) claimed that the
strong suppression result (2.74) was incorrect, despite its excellent agreement with
numerical experiments, but gave no indication as to where they thought the error lay.
In a later work, Blackman & Field (2000) underwent an abrupt change of direction,
arguing instead that the result was, after all, correct, but was inapplicable to astro-
physical situations, their argument being that the dynamics would be dominated by
the flux of magnetic helicity through the boundaries, a quantity that is of course
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Figure 2.3 - The results of numerical simulations (diamonds) determining α in a
forced, helical, chaotic flow, and their relation to two competing theoretical results
(from Cattaneo & Hughes, 1996).

zero in periodic domains, such as used by Cattaneo & Hughes (1996). It is indeed
true that a formal derivation of the α–effect, via manipulation of equations (2.68a)
and (2.68b), leads to the presence of surface terms in the expression for α [i.e. extra
surface terms in equations (2.69) and (2.70)] – terms which vanish not only for pe-
riodic boundary conditions but also for a number of choices of reasonable boundary
conditions. What is totally unclear though is the importance of such terms in an
astrophysical context. The issue of α-suppression therefore remains a controversial
and important topic.

The aim of this section has been to give an introduction to what, broadly speaking,
are the three possible approaches to understanding the behaviour of nonlinear large-
scale dynamo action. (The issue of the nonlinear evolution of small-scale dynamos,
in which the field exists on scales comparable with or smaller than that of the driving
velocity, is also a fascinating and relevant topic, though beyond the scope of this re-
view.) Each has its strengths and weaknesses. Parametrisations of mean field theory,
of the sort discussed in Section 2.7.1, are computationally tractable and thus allow
an in-depth study of the dependence of a particular model on the governing parame-
ters. Signatures of stellar magnetic fields – such as the solar butterfly diagram – can
be faithfully reproduced through parametrised mean field models. The drawback of
such models comes though from the somewhat arbitrary choice of parametrisation
and the difficulties in assigning particular behaviour to specific physical causes. As
such, one must be very careful in asserting that astrophysical magnetic fields can
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really be understood on the basis of such models, and even more careful before
making predictions about future magnetic behaviour. Theories of MHD turbulence
(such as the EDQNM model discussed above) have their roots more firmly attached
to the Navier-Stokes equation, but still rely on a number of assumptions in order to
obtain a tractable set of governing equations. It is in formulating these assumptions
that all the difficulties arise. Numerical approaches, on the other hand, are able to
solve the full nonlinear governing equations, without approximation, but – even with
the most powerful computational facilities currently available – only in parameter
regimes still far removed from those that describe most astrophysical phenomena.
Given all these drawbacks, what is the best hope for progress? Probably the most
promising avenue is to improve our understanding of specific, rather narrowly de-
fined questions – such as, for example, the dependence on Rm and B0 of α and β –
via bespoke computational models, and then to incorporate these findings into im-
proved turbulence theories. Today’s massively parallel computers are able to model
turbulent flows at moderate (from an astrophysical view) values of the Reynolds
numbers; from such models we must seek scalings and other information to lead us
into the true astrophysical regime. It is a fascinating though formidable challenge.

2.8. PHYSICALLY-REALISTIC FARADAY-DISC
SELF-EXCITED DYNAMOS

In this final section, we will highlight how nonlinearities can yield a chaotic dynam-
ical behaviour of dynamo action by returning to the matter of disc dynamos intro-
duced in Section 1.2.1. Owing to the intractablity of the governing nonlinear partial
differential equations (PDEs) in four independent variables (space and time) in the
investigation of generic nonlinear processes in such dynamos, it is not yet possible to
exploit numerical models of MHD systems. As a research strategy these processes
are better studied in the first instance by analysing the more tractable nonlinear or-
dinary differential equations (ODEs) in just one independent variable (time) that
govern the behaviour of simpler systems, such as electro-mechanical devices based,
for example, on a steadily forced Faraday disc dynamo.

We summarise the main findings of recent mathematical investigations of the sim-
plest imaginable Faraday disc dynamo systems that are both physically realistic and
provide a basis for investigating generic nonlinear effects MHD dynamos. Unlike
most systems discussed in the extensive literature on disc dynamos, the governing
equations take into account the re-distribution of kinetic energy within the system
by Lorentz forces, and the equations are “structurally stable” because they include,
in addition to terms representing dissipation due to ohmic heating equally-crucial
terms representing mechanical friction. Over wide ranges of conditions these forces
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give rise to “nonlinear quenching” of dynamo fluctuations, a process which has al-
ready been invoked by Raymond Hide as the basis for explaining possibly the most
striking feature of the long-term behaviour of the main geomagnetic field, namely
“superchron” intervals as long as 30 Ma when the polarity reversals disappear from
the palaeomagnetic record (see Chapter 4).

2.8.1. HISTORICAL SURVEY

In the 1860’s, three decades after Faraday’s invention of a dynamo incorporating
a stationary permanent magnet, Varley, Wheatstone & von Siemens independently
conceived and applied the self-excitation principle, replacing the permanent mag-
net of the Faraday dynamo with a stationary coil through which the dynamo cur-
rent could be diverted. Mathematical models of self-excited homopolar dynamos,
which came much later, have been analysed (mainly) by theoretical geophysicists
and astrophysicists interested in low-dimensional analogues of MHD self-excited
dynamos.

These mathematical investigations began in the 1950’s with the pioneering work
of Bullard & Rikitake. Bullard treated the simplest-imaginable case of all (as in-
troduced in Section 1.2.1), when (see below for full explanations of the various
parameters):

(a) there is no motor in the system [corresponding to H = 0, so that the ω together
with (2.77d) are therefore redundant];

(b) the disc resistance R̂ is infinite [so that Î and equation (2.77b) are redundant];

(c) mechanical friction retarding the motion of the disc is negligible [so that
K = 0 in (2.77c)].

By coupling two Bullard–type systems together, Rikitake introduced the much-
studied two-disc dynamo system governed by an autonomous set of three nonlinear
ODEs, the minimum number for chaotic solutions to be possible.

The neglect of mechanical friction seemed at the time to be a reasonable assumption
to make, but it is now known that the assumption has the unfortunate consequence
of rendering the equations governing the original Bullard & Rikitake systems struc-
turally unstable and their solutions, except as transients, physically unrealistic (see
Hide, 1995; Moroz et al., 1998a).

In the original Bullard (1955) dynamo α̌ is the only non-zero control parameter, for
there is no series motor, the disc conductance is zero and the sliding contacts at the
rim and axle of the disc are assumed to be frictionless. Persistent solutions are found
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with characteristics that depend on α̌ and the initial conditions. They represent peri-
odic (but non-harmonic) relaxation oscillations in which the dimensionless electric
current generated in the system, x, never changes sign.

The long-held view (see Rikitake, 1966) that the addition of mechanical friction [in
our notation (2.81b), κ̌ �= 0] would make no qualitatitive difference to this behaviour
is untenable. Hide (1995) has shown that the mathematical equations governing the
Bullard single-disc system, as well as all other friction-free multiple-disc dynamo
systems based upon it [including the influential Rikitake (1958) double-disc system],
are “structurally unstable”. In the presence of mechanical friction the Bullard system
eventually becomes steady after initial transients have died away (see also Moroz
et al., 1998). When friction is weak these transients certainly resemble “friction-
free” fluctuations, notably periodic Bullard-type non-reversing fluctuations in the
single-disc case and Rikitake-type chaotic fluctuations with reversals, but they die
away. It is noteworthy however that persistent chaotic fluctuations with reversals
can occur in a Rikitake system consisting of two coupled identical Bullard dynamos
when mechanical friction is added, provided that the two coefficients of mechanical
friction are not the same (Ershov et al., 1989; Hide, 1997a; Moroz et al., 1998).

Noting that dynamo action is impossible in the limiting case when the electrical re-
sistance of the disc vanishes (for the magnetic flux linkage of a perfect conductor
cannot change) Moffatt (1979) extended the Bullard (friction-free) model by consid-
ering the case of non-zero disc conductance, thereby allowing eddy currents to flow.
This is the case when, in addition to α̌, the control parameters ξ, χ and ν̌ required to
specify the electrical properties of the disc are also non-zero.

When mechanical friction in the disc is also taken into account, so that λ̌ �= 0,
we have the case analysed in detail by Knobloch (1981) and later by Plunian et al.
(1998), who also treated a double-disc system, thereby extending the Ershov study
to cases of non-zero disc conductance. In the Knobloch (1981) case, the govern-
ing equations are transformable into the celebrated Lorenz set, which can of course
have chaotic solutions. We note here that Malkus (1972; see also Robbins, 1976) re-
alised that by adding an electrical shunt to the Bullard system and taking mechanical
friction into account he could obtain governing equations of the Lorenz type.

Hide et al. (1996) extended the Bullard system by placing a capacitor in series with
the coil and including mechanical friction in the disc and then demonstrated the
mathematical equivalence of this system to one obtained by replacing the capacitor
with a linear motor, with (unavoidable) mechanical friction in the motor equivalent
to (unavoidable) leakage resistance in the capacitor.

© 2007 by Université Joseph Fourier



100 Raymond HIDE & Irene MOROZ

2.8.2. CHARACTERISTICS OF SELF-EXCITED DYNAMOS

The salient characteristics of all self-excited dynamos can be summarised as follows
(Hide, 2000):

(a) the mechanical-to-magnetic energy conversion process is due to motional in-
duction (represented in the equations governing MHD dynamos by the nonlin-
ear motional induction term u×B, where u denotes the Eulerian flow velocity
at a general point and B the magnetic field), and it starts with the amplification
of any infinitesimally weak adventitious magnetic field;

(b) for the amplification process to work, motional induction must overcome ohmic
losses, implying that the electrical resistance of the system must be sufficiently
low (in MHD dynamos this means a sufficiently high magnetic Reynolds
number-defined as the product of a characteristic flow speed, a characteristic
length, the magnetic permeability of the fluid, and its electrical conductivity);

(c) for the magnetic field to diffuse into the surrounding medium, the electrical
resistance must not be too low and this sets an upper limit on the magnetic
Reynolds number in MHD dynamos;

(d) ponderomotive (Lorentz) forces (as represented by the nonlinear term j × B
in MHD dynamos, where j is the electric current density) re-distribute kinetic
energy within the system (thereby retarding the buoyancy-driven eddies in
typical MHD dynamos such as the geodynamo and accelerating motions in
other parts of the eddy spectrum);

(e) no matter how weak, mechanical friction viscosity in MHD dynamos, which
inter alia dissipates kinetic energy, is never negligible;

(f) internal coupling and feedback (as represented by the terms u×B and j×B in
MHD dynamos) give rise to behaviour characteristic of nonlinear systems, i.e.
sensitivity to initial conditions leading to non-uniqueness (sometimes called
“multiple solutions”), large amplitude fluctuations (including “deterministic
chaos”), hysteresis, nonlinear stability, etc.

A strategy advocated in Hide (2000) for discovering generic processes in self-excited
dynamos is to start by investigating the temporal behaviour of simple (but not over-
simplified) systems (e.g. Faraday disc homopolar generators) governed by tractable
ODEs in the single independent variable time, T (say), and then, in the light of
the results thus obtained, formulating and executing suitable diagnostic tests of less
tractable MHD systems governed by nonlinear PDEs, in four independent space-
time variables. Apart from the undoubted mathematical interest of the solutions
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of the governing ODEs, the findings of those investigations that treat physically-
realistic systems –and we must emphasise here this requirement excludes all the
friction-free systems that have been treated in the literature (Hide, 1995) includ-
ing the much-discussed pioneering studies of Bullard (1955) and Rikitake (1958),
cf. characteristic (e) above– provide general insights into the likely behaviour of the
more complex MHD systems, such as the geodynamo operating within the Earth’s
liquid metallic outer core.

In hydrodynamics the governing mathematical equations express the laws of me-
chanics and thermodynamics, to which the laws of electrodynamics must be added
in the case of MHD. The equations owe their nonlinearity largely to advective terms
such as (u · ∇)u, (u · ∇)B, (B · ∇)u, (B · ∇)B, etc., which can in some circum-
stances promote order and stability, as in the case of solitons and in others disorder,
instability and sensitivity to initial conditions.

In mathematical analyses, such sensitivity can give rise to multiple solutions asso-
ciated with “unfoldings” in phase space near co-dimension-two bifurcations, so that
steady solutions are able to co-exist at the same point in “control parameter” space
with oscillatory and chaotic solutions. In laboratory (and numerical) work sensi-
tivity to initial conditions is manifested as non-uniqueness, chaos, and hysteresis at
regime transitions found, for example, in experiments on sloping convection (see
e.g. Hide et al., 1994) and Taylor-Couette flow (see e.g. Fenstermacher et al., 1979).

2.8.3. GOVERNING EQUATIONS IN DIMENSIONAL FORM

A Faraday disc homopolar dynamo system that satisfies all the criteria listed above
comprises a single disc and coil arrangement with a crucial additional element in the
circuit, namely an electric motor with torque characteristics that are not necessarily
linear connected in series with the coil (Hide, 1997a,1997b), see Figure 2.4. The
motor enables Lorentz forces to re-distribute kinetic energy within the system, where
feedback and coupling also contribute to its nonlinear characteristics.

The disc is driven into rotation with angular speed Ω(T ) by a steady applied cou-
ple G, where for the rest of this chapter T denotes dimensional time. Retarding
the motion of the disc is a frictional couple −K(T ) as well as a Lorentz couple
−I(MI + L̂Î). Here I = I(T ) is the main electric current generated by the dynamo
and Î(T ) is the eddy current circulating azimuthally in the plane of the disc (here-
after just “eddy current”), that is induced when dI/dT �= 0. The factor (MI + L̂Î)
thus represents the magnetic flux linkage of the disc if 2πM is the mutual inductance
between the disc and coil and 2πL̂ is the self inductance of the disc. In the absence
of Lorentz forces, friction alone retards the motion of the disc, and when G is steady
–the case of interest here– the disc rotates with steady angular speed Ω = G/K.
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The armature of the motor is driven into rotation with angular speed ω relative to the
stationary ambient magnetic field within the motor by a Lorentz couple HIf(I), in
general a quadratic function of I , produced by the dynamo current, and it is retarded
by a linear frictional couple −Dω. Here H is such that Hf(I)ω is the back EMF
due to the presence of the motor in the dynamo circuit [see equation (2.77a) below],
where

f(I) = (1 − ε) + εSI, (2.76)

and 0 ≤ ε ≤ 1 . f(I) specifies the stationary ambient magnetic field within the motor
and depends on the design of the motor. The parameter ε measures the nonlinearity
of the motor’s electro-mechanical characteristics, which vanishes only in the special
case when ε = 0. The contribution to the stationary field ∝ εSI is produced by
diverting the dynamo current through stationary field windings (S being a measure
of the mutual inductance between the armature and the field windings). This is
complemented by the contribution proportional to (1 − ε) provided by an “outside
source”. From a geophysical and astrophysical point of view, it is important here
to note that this outside source need not necessarily be a permanent magnet, for the
magnetic field produced by the current in the coil of a second dynamo would do just
as well (see Hide, 2000).

It will be convenient in this section to use the term “linear motor” when ε = 0 and
“nonlinear motor” when 0 < ε ≤ 1 (unless otherwise stated), and also to distinguish
two sub-classes of nonlinear motor, namely “quadratic motor” when 0 < ε < 1 and
“square motor” when ε = 1. The governing 4–mode dimensional set of nonlinear
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ODEs in the (I, Ω, ω, Î) is given by (see Hide, 1998)

L
dI

dT
+ M

dÎ

dT
+ RI + Hf(I)ω = Ω(MI + L̂Î) , (2.77a)

L
dÎ

dT
+ M

dI

dT
+ R̂Î = 0 , (2.77b)

A
dΩ

dT
= G − I(MI + L̂Î) − KΩ , (2.77c)

B
dω

dT
= HIf(I) − Dω , (2.77d)

where 2πL is the self-inductance of the coil, R is the total resistance of the dynamo
circuit (including the coil and the armature of the motor), A is the moment of inertia
of the disc and B that of the armature of the motor.

Equations (2.77a,b) respectively express Kirchhoff’s laws applied to the dynamo
current, I , flowing in the main circuit and to the eddy current, Î , in the disc, R̂ be-
ing the azimuthal resistance of the disc (hereafter “disc resistance”, the reciprocal
of “disc conductance”). Equations (2.77c,d) express angular momentum considera-
tions applied to the motion of the disc and to the motion of the armature of the motor
respectively.

The equations can be studied by standard methods involving stability and bifurcation
analysis and direct numerical integration. We note here in passing that if (I, Ω, ω, Î)

is a solution to (2.77b) then so is (−I, Ω,−ω,−Î) when ε = 0 and (−I, Ω, ω,−Î)
when ε = 1. However exact reversal is not a property of any of the solutions when
0 < ε < 1. This does not imply that cases when ε �= 1 can have no geophysical
or astrophysical significance. On the contrary, for the “external” contribution to the
stationary ambient magnetic field within the motor could be due solely to the current
in the coil of a second self-excited dynamo. It is readily shown that the combined
system has the requisite symmetry properties.

2.8.4. ENERGETICS AND EQUILIBRIUM SOLUTIONS

Before introducing dimensionless variables and control parameters and thereby aban-
doning a physically clear but mathematically cumbersome notation, it is instructive
to discuss both the energetics of the system and equilibrium solutions on the basis
of the dimensional equations (2.76) and (2.77). From these equations it is read-
ily shown that the time rates-of-change of the total magnetic energy and the total
mechanical energy of the system satisfy

d

dT

[
1

2

(
LI2 + 2MIÎ + L̂Î2

)]
= −RI2−R̂Î2+

{
ΩI

(
MI + L̂Î

)
− ωHIf(I)

}
,

(2.78a)
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Figure 2.5 - Energetics of the single-disc dynamo with nonlinear series motor.

d

dT

[
1
2

(
AΩ2 + Bω2

)]
= GΩ − KΩ2 − Dω2 −

{
ΩI

(
MI + L̂Î

)
− ωHIf(I)

}
.

(2.78b)
These equations have an obvious physical interpretation in terms of rates of working
of mechanical and Lorentz forces and rates of dissipation by ohmic resistance to the
flow of currents and by mechanical friction in the disc and motor. The nonlinear
feedback and coupling terms in curly brackets represent the re-distribution of kinetic
energy within the system brought about by Lorentz forces, and they cancel out when
the equations are added together to give the equation for the rate of change of the
total energy of the whole system.

Because we are considering the (important) special case when the applied couple,
G, driving the system is steady, there are steady equilibrium solutions –albeit not al-
ways stable, as we shall see below in Section 2.8.6– for which the energy equations
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are given by equations (2.78) with their left hand sides equal to zero. The govern-
ing equations (2.76) and (2.77) are then autonomous and have steady equilibrium
solutions satisfying

I

[(
MG

K
− R

)
−

(
M 2I2

K
+

H2f(I)2

D

)]
= 0 , (2.79a)

Ω =
G − MI

K
, ω = HIf(I), Î = 0 . (2.79b,c,d)

These equations always possess one “trivial” equilibrium solution

(I, Ω, ω, Î) = (0, G/K, 0, 0), (2.80)

and this is the only possible equilibrium solution when the dimensionless quantity
GM/KR [see (2.82a) below] –which is analogous to the magnetic Reynolds number
in MHD dynamos– is so small that the term in square brackets in (2.79a) is negative
for all real values of I . Otherwise, when GM/KR is sufficiently large, there are
two further equilibrium solutions with I �= 0, obtained by substituting (2.79b) and
(2.79c) into (2.79a) [cf. equation (2.84e) below].

2.8.5. DIMENSIONLESS EQUATIONS

The electro-mechanical characteristics of the system can be specified in terms of a
set of dimensionless control parameters. Various combinations are possible, depend-
ing on the choice of scaling of the dependent and independent variables. Following
Hide (1997a,1997b) (see also Hide & Moroz, 1999, and Hide, 2000) we take

α̌ =
GLM

AR2
, κ̌ =

KL

AR
, ξ =

M

L
, (2.81a,b,c)

χ =
RL̂

R̂L
, ν̌ =

L̂

M
, (2.81d,e)

to specify the characteristics of the disc, and

β̌ =
H2L

R2B
, λ̌ =

DL

RB
, σ̌ = S(G/M)1/2 (2.81f,g,h)

to specify the characteristics of the series motor. Parameters (2.81a-h) as others
in this section are noted with a “check” symbol (̌ ) . These variables will be used
in the remaining of this chapter to describe the characteristics of the disc-motor
setup. They should not be confused with MHD variables (α, β, κ, λ, μ, ν, ρ, σ)
used elsewhere in the book.
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It is convenient to make use of certain combinations of these basic control parame-
ters, namely

α =
α̌

κ̌
=

GM

KR
, β =

β̌

λ̌
=

H2

RD
, (2.82a,b)

μ̌ =
(ξ/ν̌)

(1 − ξ/ν̌)
=

M 2

LL̂ − M 2
. (2.82c)

These control parameters are all essentially non-negative (including μ̌, since LL̂ >
M 2) in systems of direct physical interest, but there may, of course, be mathematical
interest in solutions of the governing equations in cases when some of the parameters
are negative.

We introduce the dimensionless independent variable t and the dimensionless de-
pendent variables [x(t), y(t), z(t), w(t)] where

T = (L/R)t, I = (G/M)1/2x , Ω = (R/M)y , (2.83a,b,c)

ω = (LH/RB)(G/M)1/2z , Î = (G/M)1/2w. (2.83d,e)
Then using equations (2.81)–(2.83) in equations (2.76) and (2.77) gives4

ẋ + ξẇ = −x − β̌ f(x) z + y(x + ν̌ w) , (2.84a)
ẇ + ẋ/ν̌ = −w/χ , (2.84b)

ẏ = α̌[1 − x (x + ν̌ w)] − κ̌ y , (2.84c)
ż = xf(x) − λ̌ z , (2.84d)

where f(x) = 1 − ε + ε σ̌ x . (2.84e)
This formulation is identical to that given in Hide & Moroz (1999) and Moroz &
Hide (2000), with a slight redefinition of the control parameters.

The nontrivial equilibrium states are now given by

(y, z, w) = (α (1−x2), x f(x)/λ̌, 0) , α−1−(α x2+β f(x)2) = 0 , (2.85a,b)

while the trivial equilibrium state becomes (x, y, z, w) = (0, α, 0, 0).

Equations (2.84a-e) can be transformed into other sets of equations, some mathemat-

reformulation not considered previously is obtainable by introducing X = x + ν̌ w,
thereby eliminating the parameter ν̌. If, in addition, one introduces the variable
Y = x + χw, then one recovers the 4–mode dynamo model investigated by Hide &
Moroz (1999); Moroz & Hide (2000). The two new variables X and Y are identifi-
able as flux variables. The reader is referred to those papers for further details. All
of the numerical integrations described in the later subsections of this section are
based upon this alternative Moroz & Hide reformulation.

4 We use a dot to denote differentiation with respect to t.
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2.8.6. GENERIC SOLUTIONS

Nonlinearity means that the solutions in which we are mainly interested, namely
those that persist after transients have died away, can be very sensitive to the initial
conditions and/or parameter choices. A comprehensive investigation of the 4–mode
dynamo equations is not feasible because of the large numbers of parameters in-
volved. While the control parameters in any given case represent one point in an
eight-dimensional parameter space, for many purposes a two-dimensional regime
diagram with β as abscissa and α as the ordinate was established at an early stage of
the investigations reviewed here.

 F̂

 Ŝ

 N̂

ŝ

ŝ

 f̂

 f̂

steady dynamo action

no dynamo action

fluctuating dynamo action

−α

−β

Figure 2.6 - Typical schematic regime diagram in the (β, α)) plane (figure 1 of
Hide, 2000, reproduced by kind permission of the Royal Society). Within the region
labelled N̂ , the parameter α (the effective “magnetic Reynolds number”) is too small
for dynamo action to occur. At higher values of α, steady dynamo action occurs
within the main region Ŝ and sub-regions ŝ; fluctuating dynamo action occurs within
the main region F̂ and the sub-regions f̂ . The sub-regions disappear when the
electrical properties of the disc are such that the azimuthal component of the current
in the disc is negligible.

Figure 2.6 shows but one possibility amongst a wide variety of different regime di-
agrams that have been obtained in studies of the transformed version of equations

state (x, y, z, w) = (0, α, 0, 0) is the only stable equilibrium state within those re-
gions N̂ (say) of parameter space for which α < α∗, where α∗ is determined from
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whichever bifurcation curve forms that segment of the stability boundary (see, for

Persistent dynamo action cannot occur within N. It is throughout the rest of param-
eter space, in regions Y , say, where α > α∗ that the trivial solution is unstable, that
persistent dynamo action takes place. Within these Y regions there are two general
possibilities, namely steady dynamo action and fluctuating dynamo action. The first
occurs within regions labelled as Ŝ and ŝ in Figure 2.6.

Fluctuating dynamo action occurs throughout the rest of Y , within regions labelled
F̂ and f̂ in Figure 2.6 (or in the more explicitly labelled regime diagrams of Hide &
Moroz, 1999, and Moroz & Hide, 2000), where the non-trivial equilibrium solutions
lose their stability to large amplitude fluctuations of varying degrees of complexity,
including multiple solutions and chaos (see below).

Self-excited dynamos, be they disc or MHD dynamos, satisfy essentially nonlinear
equations, with generic solutions that are multiple and much more varied and inter-
esting than just reflectionally- symmetric pairs [in MHD cases (u,B) and (u,−B)],
corresponding to an unaltered velocity field and a completely reversed magnetic
field. We note here in passing (see below) that when 0 < ε < 1, bias is auto-
matically introduced into the fluctuating time series, regardless of its length. When
ε = 0 or ε = 1, the symmetry properties of the governing equations suggest that one
can define the length of time T̃ taken for any bias in the time series to vanish. T̃ is
clearly infinite in the case of stable steady persistent solutions. On the other hand,
for fluctuating persistent solutions T̃ can of course be finite. Time series exhibiting
these asymmetry/symmetry characteristics are presented in a later subsection.

2.8.7. SURVEY OF BEHAVIOUR

VARIATIONS ON A THEME

Hide et al. (1996) extended the Bullard system by placing a capacitor in series with
the coil and including mechanical friction in the disc and then demonstrated the
mathematical equivalence of this system to one obtained by replacing the capacitor
with a linear motor, with (unavoidable) mechanical friction in the motor equivalent
to (unavoidable) leakage resistance in the capacitor. In this case the only non-zero
parameters are α̌, β̌, κ̌ and λ̌.

We find it useful to employ the notation used in Section 2.8.5 above to summarise the
results of extensions to the Hide et al. (1996) dynamo, including the one described
by (2.84a-e).

(a) a linear motor (ε = 0) and no disc eddy currents (χ = 0);
Case (a) is the original Hide et al. (1996) study in which the nonlinear dynam-
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ics was found to be controlled by the presence of a codimension-two Takens-
Bogdanov double-zero bifurcation. The linear stability curves for steady and
oscillatory dynamo action for both the trivial and the non-trivial states all
emerge from one bifurcation point in (β, α)–space. Steady and fluctuating
(periodic and chaotic) solutions are possible, with chaotic dynamics being
confined to a small region of parameter space, near the (subcritical) Hopf
stability boundary for the onset of oscillatory solutions associated with the
nontrivial equilibria, provided λ̌ > κ̌. When κ̌ > λ̌, no chaotic solutions were
observed.

(b) a square motor (ε = 1) and no disc eddy currents (χ = 0);
Hide (1997b) considered the case of a square series motor so that ε = 1 and
found parameter space to be dominated by steady dynamo action. He termed
this phenomenon “nonlinear quenching”.
According to Hide (2000), nonlinear quenching is associated with the re-

ory of geomagnetic polarity reversals, the most striking property of which is
the absence of reversals during very long intervals of time, the so-called “po-
larity superchrons”.
Mathematically, nonlinear quenching arises because, as noted by Moroz (2002),
the Takens-Bogdanov double-zero bifurcation, responsible for the oscillatory
solutions in the Hide et al. (1996) dynamo, now occurs at infinity.

(c) a linear motor (ε = 0) with azimuthal eddy currents (χ �= 0);
The extent to which this picture is changed when eddy currents are allowed to
flow in the disc has been considered by treating systems for which the control
parameters χ, ξ and ν̌ are no longer zero (Hide & Moroz, 1999). For a linear
motor, the dynamics of the system is much richer than in the absence of eddy
currents

ρ̌ =
ν̌

χ(ν̌ − ξ)
, μ̌ =

ξ

ν̌ − ξ
, (2.86a,b)

then four scenarios are possible:

– when ρ̌ < λ̌(1 + μ̌), only steady solutions are possible and nonlinear
quenching occurs;

– when λ̌(1 + μ̌) < ρ̌ < ρ̌L (where ρ̌L denotes the critical value of ρ̌ for
the existence of the Lorenz subcritical Hopf bifurcation for β̌ = 0), the
scenario resembles that of Hide et al. (1996);

– when ρ̌ > ρ̌L, parameter space is dominated by fluctuating solutions,
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distribution of kinetic energy within the system by Lorentz forces (see item

therefore occurs in MHD dynamos, it could provide the basis of testable the-
(d) of Section 2.8.2 above), and if, as seems likely, the process is generic and
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either periodic or chaotic, with steady states occupying only a small re-
gion;

– when λ̌(1 + μ̌) > ρ̌ > ρ̌L, no double-zero bifurcation is possible and
partial nonlinear quenching occurs. Oscillatory solutions are confined to
small values of β̌ and large values of α̌ and emanate from the subcritical
Lorenz bifurcation point on the β̌ = 0 axis.

(d) a square motor (ε = 1) with azimuthal eddy currents (χ �= 0);
In the cases when the motor is square (i.e. e=1) and eddy currents are allowed
to flow in the disc, nonlinear quenching is still a key process, but it is again
partial rather than complete in the sense defined in (c) above (Hide & Moroz,
1999).

(e) a quadratic motor (0 < ε < 1) with no azimuthal eddy currents (χ = 0);
Moroz (2002) extended the analyses of Hide et al. (1996) and Hide (1997a,b)
to the case of a nonlinear series motor with 0 < ε < 1 in the absence of eddy
currents. The double-zero bifurcations for the trivial and the nontrivial equi-
libria no longer coincide. There are multiple steady state bifurcation curves, as
well as an additional Hopf bifurcation curve, which result in additional (non-
degenerate) codimension-two Hopf-steady bifurcations. This yields a much
richer range of behaviour. The continuous range of chaotic solutions, a fea-
ture of case (a), now fragments and gives rise to a structure of interleaving
chaotic and periodic behaviour of differing oscillatory patterns.

(f) a quadratic motor (0 < ε < 1) with azimuthal eddy currents (χ �= 0);
When 0 < ε < 1 and in the presence of eddy currents, the two double-
zero bifurcations again become non-coincident and multiple steady and Hopf
bifurcation curves generate a greater diversity of nonlinear behaviour than
that found in case (e). Depending upon the parameter values, Moroz & Hide
(2000) also found chaos occurring not far above the transitional curve for the
onset of nontrivial dynamo action. Multiple solutions are possible and the
nonlinear and linear stability thresholds are subject to hysteresis effects (see
also the following subsection).

OTHER EXTENSIONS

Since the seminal work of Hide et al. (1996), other extensions to the basic dynamo
systems have been investigated. Moroz et al. (1998a,b) investigated the behaviour
of two coupled dynamo units with linear motors and in the absence of eddy currents.
The first study confirmed the work of Hide (1995) on the structural instability of the
Rikitake dynamo in the presence of even a small amount of friction, while the second
study focused upon establishing general criteria for the existence of phase locked
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states. Moroz (2001a) extended this study of synchronisation to a three dynamo
configuration. The general problem of two coupled dynamos with nonlinear series
motors was addressed in Moroz (2002), who also reviewed the research to date on
the Hide family of dynamos to which the interested reader is also referred.

A start was made by Goldbrum et al. (2000) to analyse dynamo models, biased by
immersion in a background magnetic field and/or by connecting a battery in series
with the motor and coil (cf. the so-called “Biermann” battery of astrophysics), as
given in Hide (1997a). The initial study was for the battery only, while Moroz
(2001b) investigated both the battery and magnetic field.

Finally, Moroz (2003, 2004a, 2004b) returned to the original Malkus–Robbins dy-
namo, extended to incorporate both a linear and a quadratic series motor, but in the
absence of azimuthal eddy currents, to find different types of regime diagrams and
different transition sequences between nonlinear states.

2.8.8. SOME NUMERICAL INTEGRATIONS

In addition to the regime diagrams and behaviours described in Hide & Moroz
(1999) and Moroz & Hide (2000), we present a selection of phase portraits, time
series and bifurcation diagrams, which represent slices of parameter space for spe-
cific choices of the various parameters of the four-mode dynamo of Section 2.8.5
when re-written in the flux-formulation of Hide & Moroz (1999). In all of our inte-
grations we chose α̌ = 100, κ̌ = 1, λ̌ = 1.2, μ̌ = 0.5 and ρ̌ = 16, where μ̌ and ρ̌
are defined in equation (2.86a,b). In so doing we shall demonstrate the existence of
multiple solutions, as well as bias in the time series when 0 < ε < 1.

ε = 0 AND ε = 1

The two cases reported here should be viewed in conjunction with Figures 1 and 2
of Hide & Moroz (1999). When ε = 0, chaotic solutions persist for the range of β̌

that we investigated, namely 0 ≤ β̌ ≤ 25. Figure 2.7 shows the time series of X and
Figure 2.8 shows that corresponding phase portrait in the (X, w)–plane for β̌ = 5.

When ε = 1 and as described above, chaotic solutions are confined to much smaller
regions of parameter space. Figure 2.9 shows a section of the X(t) time series and
Figure 2.10 the phase portrait in (X, w)–space, for β̌ = 0.4 which is close to the
transition from chaotic to steady dynamo action, when β̌ is increased.
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Figure 2.7 - Time series of X for ε = 0 and β̌ = 5.
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Figure 2.8 - The phase portrait in the (X, w)–plane for the same parameter values
as in Figure 2.7.
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Figure 2.9 - Times series of X for ε = 1 and β̌ = 0.4.
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Figure 2.10 - The phase portrait in the (X, w)–plane for the same parameter values
as in Figure 2.9.
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Figure 2.11 - Plot of the local maximum value of X when ε = 0.4, as a function of
β, for β̌ increasing.
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Figure 2.12 - As in Figure 2.11, but for β̌ decreasing.
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Figure 2.13 - A section of the time series for X when ε = 0.4 and β̌ = 6.
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Figure 2.14 - The phase portrait in the (X, w)–plane for the same parameter values
as in Figure 2.13.
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0 < ε < 1

We now amplify the results depicted in Figure 8 of Moroz & Hide (2000). Fig-
ure 2.11 shows the plot of local maximum values of X as a function of β̌ for ε = 0.4
as β̌ is increased, while Figure 2.12 shows the corresponding plot when β̌ is de-
creased. The procedure is as follows. The initial value of β̌ is chosen and the
maximum values of X are recorded after transients have decayed. Then β̌ is in-
creased/decreased and the final state is used as the initial condition for the next in-
tegration. This results in a bifurcation diagram, as a slice in parameter space, which
affords a direct and simple way of identifying where different types of oscillatory
behaviour may be found. Note the presence of windows of periodic solutions, sep-
arated by bands of chaotic solutions before the solution loses stability to a simple
periodic solution when β̌ ≈ 10.3.

Figure 2.13 shows part of a time series for X when β̌ = 6 and ε = 0.4, while Fig-
ure 2.14 shows the corresponding phase portrait in the (X, w)–plane. Immediately
apparent is the bias, introduced when ε differs from 0 or 1. The system spends more
time oscillating (irregularly) around one of the (unstable) equilibrium states than it
does around the other. A reversal in the time series occurs after a gradual build up
in the maximum and minimum amplitudes.

When ε = 0.535, chaotic solutions persist until β̌ ≈ 4, when the system loses
stability to a simple periodic limit cycle. This also persists until β̌ ≈ 5.2, when
steady dynamo action obtains. Figure 8(c) of Moroz & Hide (2000) suggests that
the disappearance of oscillatory solutions could be caused by the presence of the
branch H3 of periodic solutions.

In conclusion, this last section has presented a brief survey of some recent work
which the authors and their collaborators have conducted on self-excited dynamos.
As well as placing our own investigations into a historical context, we have made
an effort to identify some key features of naturally-occurring MHD systems with
their counterparts in the much lower-dimensional (and more tractable) Faraday-disc
dynamos. Moreover care has been taken to ensure that the dynamo models studied
exhibit structural stability, in contrast to the Bullard and Rikitake models.

In Section 2.8.6, we saw that features, generic to this class of dynamo are regions
of parameter space in which no dynamo action, steady dynamo action and fluc-
tuating dynamo action occur. The precise details as to where and which type of
persistent behaviour dominates is, however, model and parameter dependent (see
Section 2.8.7). Bifurcation transition sequences between different finite amplitude
states are possible, in which chaotic and simple periodic behaviour interleave (see,
for example, Figure 2.11). In addition, the nonlinear regime exhibits hysteresis with
multiple solutions possible.
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Other studies, referenced in Section 2.8.7, have introduced terms into the basic
model, such as the effects of an external battery, which break the symmetry of the fi-
nite amplitude steady state solutions, as well as creating additional codimension-two
bifurcations (Moroz, 2001b).

It is clear that this class of low order dynamo is capable of producing a rich range
behaviours, depending upon both the parameters and the specific dynamo model
chosen. What is required is some way of distinguishing between the whole gamut of
possibilities. One such approach involves the identification of the underlying basis
of unstable periodic orbits (UPOs), specific to a given model. Further investigations
along these lines should prove rewarding.
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CHAPTER 3

DYNAMICS OF ROTATING FLUIDS

Friedrich Busse, Emmanuel Dormy,
Radostin Simitev & Andrew Soward

In this chapter we introduce basic concepts concerning the dynamics of rotating flu-
ids. The effect of rapid rotation on a flow can significantly alter its nature. These
effects are particularly important for planetary applications. In Section 3.1 we in-
troduce steady boundary layers and shear flows, which occur in rotating fluids, and
show how these layers can have a strong influence on the mainstream flow outside
them. In Section 3.2, we consider the combined influence of rotation and magnetic
field on these layers. Time dependent effects, particularly waves propagating in ro-
tating and electrically conducting fluids, are considered in Section 3.3. Finally, in
Section 3.4, we address the particular case of thermal Rossby wave, which is the
preferred mode of convection in a rapidly rotating sphere such as planetary interi-
ors. We shall devote Section 3.4.2 to a description of the simpler rotating cylindrical
annulus model, since it offers the simplest access to the spherical problem. The
basic equations for the spherical problem are introduced in Section 3.4.3 and the
onset of columnar convection in spherical shells is discussed in Section 3.4.4. In
Section 3.4.5 the onset of inertial mode convection is described which prevails at
very low Prandtl numbers. In Section 3.4.6 the properties of finite amplitude con-
vection are outlined for moderately low Prandtl numbers Pr, while convection at
higher values of Pr is considered in Section 3.4.7. In Section 3.4.8 equatorially at-
tached convection is considered which evolves from inertial mode convection. The
problem of penetrative convection is addressed in Section 3.4.9 where also some
aspects of convection in the presence of thermal as well as chemical buoyancy are
discussed. The chapter concludes with some remarks on applications among which
the dynamo action of convection is of special importance.
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3.1. BOUNDARY AND SHEAR LAYERS
IN ROTATING FLOWS

When a fluid has a low viscosity, the ensuing laminar flow may be largely inviscid
in character in the bulk of the flow domain, which we refer to as the mainstream. At
a boundary ∂D, with unit normal n directed into the fluid, the velocity U of inviscid
flow satisfies the impermeable boundary condition5

n · U = 0 on ∂D . (3.1a)

However, viscous flow, velocity u, also satisfies further conditions dependent on
the nature of the boundary. For stationary rigid boundaries considered throughout
this section, the viscous fluid satisfies, in addition to (3.1a), the no-slip boundary
condition

n × u = 0 on ∂D , (3.1b)

namely that the tangential component of the velocity vanishes. To meet that con-
dition there is a thin region adjacent to the boundary, where viscosity is important,
which we call the boundary layer. Inside it, approximations to the equation of mo-
tion may be made based on the assumption that the typical length scale parallel to
the boundary L is long compared with the boundary layer thickness, δ. The most
important consequence of this is that the fluid pressure, p, inside the boundary layer
is independent, correct to leading order in δ/L, of the coordinate z (say) normal to
the wall and determined by the mainstream pressure just outside. The components
parallel to the boundary of the equation of motion are then solved to determine the
boundary layer velocity u. Having solved the boundary layer equations the results
are used to obtain reduced boundary conditions on the mainstream flow velocity u.
In the case of a fluid of constant density ρ, to which we restrict attention throughout
this section, the impermeable boundary condition n · u = 0 on the mainstream is
replaced by

n·u = n·∇× (Q×n) , where Q =

∫ z/δ→∞

0

(u‖−U) dz (3.2a,b)

is the volume flux deficit carried by the boundary layer; here we assume that the
components of u parallel to the boundary, namely u‖, and U merge on leaving the
boundary layer:

u‖ − U → 0 as z/δ → ∞ . (3.3)

The result (3.2) follows from mass continuity integrated over a a thin “penny-shaped
disc” sitting on the boundary, yet thick enough to encompass the boundary layer. It

5 In the following two sections (dealing with asymptotic developments), we will use capital letters
for mainstream solutions.
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says that −n · u = ∇‖ · Q, namely the two-dimensional divergence of Q on the
boundary surface. We offer no proof here but establish the result in a simple Ekman
layer case with planar boundary in the following subsection.

In some cases boundary layers become detached from the boundary but retain a
boundary layer structure. We call them shear layers. Though a good account of
Ekman layers is given by Greenspan (1968), the then topical shear layer theory was
surveyed with a clearer perspective later by Moore (1978).

3.1.1. EKMAN LAYERS

Relative to a Cartesian reference frame (x, y, z) rotating with angular velocity Ω =
(0, 0, Ω), the slow, steady flow, velocity U = uG, of inviscid fluid is in geostrophic
balance and satisfies

2Ω × uG = −∇(p/ρ) , (3.4)

where p is the pressure. In consequence, the flow satisfies the Proudman–Taylor
theorem and is independent of the co-ordinate z parallel to the rotation axis.6

The essential properties of an Ekman layer can be understood in terms of the fol-
lowing simple model. Consider a viscous fluid, kinematic viscosity ν, moving with
uniform geostrophic uG = (uG, vG, 0) in the region z > 0 above the plane bound-
ary ∂D : {z = 0}. The fluid velocity u = (u(z), v(z), 0) in the Ekman layer is a
function of z alone and satisfies

− 2Ωv = − ∂

∂x

(
p

ρ

)
+ ν

d2u

dz2
, −2 ΩvG = − ∂

∂x

(
p

ρ

)
, (3.5a,b)

2Ωu = − ∂

∂y

(
p

ρ

)
+ ν

d2v

dz2
, 2 ΩuG = − ∂

∂y

(
p

ρ

)
. (3.5c,d)

By multiplying the second equation by i and adding to the first, this set of equations
of equations reduces to the single complex equation

δ2
E

d2Z

dz2
− 2 (sgn Ω) i (Z − ZG) = 0 , in which δE =

√
ν/|Ω| (3.6a,b)

and Z ≡ u + iv, ZG ≡ uG + ivG. The solution satisfying the boundary conditions
(3.1b) and (3.3) is

Z = ZG {1 − exp [−(1 + (sgn Ω) i) z/δE]} , (3.7)

where we identify δE with the Ekman layer thickness. The path Z(z) : 0 ≤ z < ∞
traced by Z on the Argand Diagram (equivalently u(z) in the (x, y)–plane) is re-
ferred to as the “Ekman Spiral” (see Figure 3.1).

6 Indeed, the curl of (3.4) yields immediately (Ω · ∇)uG = 0.
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Figure 3.1 - Ekman layers (Ω > 0). (a) The velocity profile u(z). (b) The Ekman
spiral projection on the (x, y)–plane.

The tangential stress τ = ρν(du/dz)|z=0 on the the boundary is determined by
differentiating (3.7). Its components (τx, τy) satisfy

τx + i τy = ρν
du

dz

∣∣∣∣
z=0

= ρ
√

2ν|Ω|ZG exp[(sgn Ω) i π/4] . (3.8)

Likewise the components (Qx, Qy) of the volume flux deficit (3.2b) determined by
integrating (3.7) satisfy

Qx + i Qy = (δE/
√

2) ZG exp[(sgn Ω) i 3π/4] (3.9a)

or explicitly

Q = 1
2
δE [(−uG , −vG) + (sgn Ω) (−vG , uG)] . (3.9b)

To help interpret the above results, take axes such that uG = (uG, 0, 0). Then as z
increases from zero the flow velocity u increases from zero where the Ekman Spiral
has tangent du/dz|z=0 at (sgn Ω) 45◦ to the x–axis [see (3.8)]. The velocity has a
substantial positive y–component v until the velocity vector u spirals in tightly about
uG (see also Figure 3.1b). This process is quantified by the mass transport ρQy =
(sgn Ω) (δE/2) ρ uG in the y–direction [see (3.9)] perpendicular to the mainstream
geostrophic flow. The point is that with ΩuG positive a negative y–component of
pressure gradient is set up [see (3.5d)] which is unbalanced by the weaker Coriolis
acceleration in the Ekman layer leading to the positive (negative) y–mass transport
ρQy, when Ω is positive (negative).

When the geostrophic flow is no longer uniform but varies on a length scale L large
compared with δE , the velocity uG continues to have no z–component and its mass
continuity implies that ∂xuG + ∂yvG = 0. It follows that the boundary layer form of
the mass continuity equation for u = (u, v, w) can be expressed in the form

∂zw = −∂x(u − uG) − ∂y(v − vG) . (3.10)
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(a) (b)

� > 0

upwelling

� �

� < 0

downwelling

Figure 3.2 - Ekman pumping (Ω > 0). (a) Upwellings Ω · ∇ × uG > 0. (b)
Downwellings Ω · ∇ × uG < 0.

Integration with respect to z and application of the impermeable boundary condition
(3.1a), namely w|z=0 = 0, determines

wE = − ∂xQx − ∂yQy , (3.11)

where wE is the value of w as z/δE ↑ ∞. Upon substitution of (3.9b) and use again
of the continuity condition ∂xuG + ∂yvG = 0, we obtain

wE = 1
2
δE (sgn Ω) ζ , where ζ = ∂xvG − ∂yuG (3.12a,b)

is the z–component of the vorticity of the Geostrophic flow. The process by which
fluid is transferred out of (into) the Ekman layer is known as Ekman pumping (suc-
tion). When gravity identifies the positive (negative) z–direction as upwards (down-
wards), it leads to upwelling (downwellings) when the vorticity ζ has the same (op-
posite) sign to Ω [see Figure 3.2a(b)].

When the rotation vector Ω is no longer parallel to the unit normal n, the Ekman
layer structure is essentially the same but with Ω replaced by Ω⊥n, where Ω⊥ =
n · Ω; the components of Ω parallel to the boundary do not influence the laminar
Ekman layer dynamics. Thus the volume flux deficit (3.9b) becomes

Q = 1
2
δE⊥ [−uG + (sgn Ω⊥)n × uG] , (3.13a)

where δE⊥ =
√

ν/|Ω⊥| = δE

/√
| cos θ| (3.13b)

is the Ekman boundary layer thickness and Ω⊥ = n · Ω = Ω cos θ. The Ekman
pumping velocity n · u is now obtained from (3.2) in the form given on p. 46 of
Greenspan (1968). At a planar boundary the result reduces to

n · u = 1
2
δE⊥ (sgn Ω⊥)n · ∇ × uG , (3.14)

which relates the normal flux to the vorticity ∇ × uG of the mainstream geostrophic
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3.1.2. SIDEWALL E1/3–LAYERS

When the boundary is parallel to the rotation vector (Ω⊥ = 0), the boundary layer
is no longer governed by the system (3.5) and we have to consider the steady, linear
equation of motion

2Ω × u = −∇(p/ρ) + νΔu with ∇ · u = 0 (3.15a,b)

together with the vorticity equation

− 2Ω · ∇u = νδζ with ζ = ∇ × u (3.16a,b)

obtained by taking its curl.

Throughout this section we will take Ω = (0, 0, Ω) with Ω > 0 and consider 2–
dimensional flows

u = (u, v, w) = (−∂zχ, v, ∂xχ) , ζ = (−∂zv, −Δχ, ∂xv) , (3.17a,b)

in which the streamfunction χ and velocity v are independent of the coordinate y.

Our objective now is to consider boundary layers tangent to the rotation axis for
which the x–length scale is small compared to the z–length scale. So on making the
approximations ∂x � ∂z, the y–components of (3.15a) and (3.16a) reduce to

−2 ∂zχ = δ2
E ∂xxv and − 2 ∂zv = − δ2

E ∂xxxxχ , (3.18a,b)

respectively, where δE is the boundary layer thickness (3.6b). Then boundary layer
solutions, which decay to zero as |x| → ∞ in one of the half-spaces x > 0 and x < 0
and are spatially periodic on a length 4H in the z–direction, have the complex form

{w, v} = w̃
{

cos
( πz

2H

)
, − (sgn x) α3 sin

( πz

2H

)}
exp

[
−α

(
π

δ2
EH

)1/3

|x|
]

,

(3.19a)
where w̃ is a complex constant and α can take each of the three values

α = [1 , (1 ± i
√

3)/2] and α3 = [1 ,− 1] . (3.19b,c)

Evidently the boundary layer width described by (3.19a) is

δS = (δ2
EH)1/3 = E1/3H , where E = (δE/H)2 = ν/H2|Ω| (3.20a,b)

is the Ekman number; such structures are often called E1/3–Stewartson layers. Sim-
ple scale analysis of the original equation (3.18a,b) would yield this E1/3H length
scale.
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To illustrate the idea, we consider fluid confined between two plane boundaries
z = ±H . Each half-plane sgn x > 0 moves rigidly parallel to itself with ve-
locity ±(sgn x)V0(0, 1, 0). This is a slight variant of one of Stewartson’s (1957)
original split-disc problems. The anti-symmetry in z ensures that the geostrophic
velocity vanishes: uG = 0. As a consequence the Ekman volume flux deter-
mined from (3.13) in the associated boundary layers is uniform and takes the value
Q = ±(sgn x)(δE/2)V0(1, 1, 0). Since the Ekman fluxes are uniform on each half-
plane the Ekman pumping velocity vanishes everywhere except at x = 0. There on
the bottom z = −H (top z = H) boundary the Ekman boundary layer fluxes con-
verge (diverge), where they emerge as source (sink) flows with volume fluxes δEV0.
This leads to the boundary conditions

w = δEV0 δ(x) (Ω > 0) on z = ±H , (3.21a)

where δ(x) is the Dirac δ–function. Equivalent conditions are

w = 0 on z = ±H , x 	= 0 , (3.21b)
χ → ± 1

2
δEV0 on −H ≤ z ≤ H , as x → ±∞ , (3.21c)

which accounts for the volume flux between the source-sink combination. The
Fourier transform solution of (3.18) subject to this boundary condition (3.21a) is

{w, v} =
δEV0

π

∫ ∞

0

{[
cos(kx) cosh(1

2
δ2
Ek3z)

]
,
[
sin(kx) sinh(1

2
δ2
Ek3z)

]}
cosh 1

2
δ2
Ek3H

dk .

(3.22)
These expressions may be turned into infinite sums by application of contour inte-
gration in the complex plane and use of the residue theorem. The result for w = ∂xχ
yields

χ = δEV0 (sgn x)

[
1

2
−

∞∑
n=0

2(−1)n

(2n + 1)π
F (Xn) cos

(
(2n + 1)

πz

2H

)]
, (3.23a)

where Xn = [(2n + 1)π]1/3 x/δS , (3.23b)

F (Xn) = 1
3

[
exp (−|Xn|) + 2 exp

(
− 1

2
|Xn|

)
cos

(
1
2

√
3|Xn|

)]
(3.23c)

and we have taken advantage of the finite Fourier transform identity

1

2
=

∞∑
n=0

2(−1)n

(2n + 1)π
cos

[
(2n + 1)

πz

2H

]
on − H < z < H . (3.23d)

Rather than do the contour integrations to obtain the results (3.23), it is perhaps more
straightforward and illuminating to check directly that it meets the conditions of the
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problem. Since w = ∂xχ obtained from (3.23a) is composed of the eigenmodes
(3.19), it solves (3.18a,b) whenever x 	= 0, and evidently meets the boundary con-
ditions (3.21b,c). Finally the continuity of (3.23a) and all its x–derivatives across
x = 0 may be checked by expanding the exponentials in (3.23c) as power series.
Then we may recast (3.23a) in the form

χ = δEV0

∞∑
n=0

(−1)n

(2n + 1)π

[ ∞∑
m=0

(
(−1)m + 1

3

) (Xn)2m+1

(2m + 1)!

]
cos

(
(2n + 1)

πz

2H

)
,

(3.23e)
from which continuity is self-evident.

The solution (3.23a) shows that w is small O((δE/δS)V0) = O(E1/6V0). Similar ex-
pressions exist for v which is likewise small O(E1/6V0). Nevertheless, as the source
at (x, z) = (0,−H) is approached the strengths of these flows increase and their
asymptotic values determined by (3.22), on retaining only the dominant exponential
in each of the hyperbolic functions, are

{w, v} =
δEV0

π

∫ ∞

0

{[
cos(kx) exp(− 1

2
δ2
Ek3Z)

]
,

[
− sin(kx) exp(−1

2
δ2
Ek3Z)

]}
dk , (3.24a)

where Z = z + H and 0 ≤ Z 
 H . (3.24b,c)

Moreover these solutions are of similarity form

{w, v} = V0

(
δE

Z

)1/3

{W (ξ) , V (ξ)} , where ξ =
x

(δ2
EZ)1/3

= O(1)

(3.25a,b)
is the similarity variable. Furthermore by (3.24a) W and V are given by the real and
imaginary parts of

W − iV =
1

π

∫ ∞

0

exp(iKξ − 1
2
K3) dK (3.26a)

[Moore & Saffman, 1969, equations (3.23–26)]. Direct substitution shows that it
satisfies the inhomogeneous complex Airy equation

(W − iV )′′ + 2
3
i ξ (W − iV ) = − 2

3
π−1 , (3.26b)

where the prime denotes the ξ–derivative. It is readily verified that the ξ–derivative
of (3.26b) is consistent with (3.18). This integrated form, which incorporates the
boundary conditions in a non-trivial way, is useful as it is shows that V ≈ −1/(πξ)
(equivalently v ≈ −δEV0/(πx)) as |ξ| → ∞. Note also that, since χ = δEV0Υ(ξ)
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Figure 3.3 - Boundary singularity in the neighbourhood of x = 0, Z = z + H = 0.
The location of the E1/3–layer, similarity region and Ekman layer are indicated.

where Υ =
∫ ξ

0
Wdξ, the curves ξ = constant are streamlines. The similarity solution

is valid in the “similarity” region where ξ = O(1) (see Figure 3.3) but is unreliable
outside it when |x| = O(δS) = O(E1/3H). In that part of the E1/3–Stewartson layer,
where w and v are O(E1/6V0), the solution is properly determined by (3.23a).

The essential point is that within the similarity region w and v increase as (δE/Z)1/3

with decreasing Z along curves δ2
EZ = (x/ξ)3, where ξ = constant. Nevertheless

they remain small outside the Ekman layer, where Z � δE . Once Z = O(δE),
the width of the similarity region has also shrunk to O(δE). Here, in a small region
centred at (x, Z) = 0 of radius O(δE), both the x and z length scales are comparable.
Accordingly the scale separations assumed in both the Ekman and similarity layers
are no longer valid and the solutions fail.

Similar results pertain to the neighbourhood of the sink at (x, z) = (0, H). Together
they confirm that, since

∫ ∞
−∞ Wdξ = 1, all the Ekman flux passes through the E1/2×

E1/2– regions at (x, z) = (0,±H) and they provide the source-sink combination
for the E1/3–Stewartson layer. The ensuing streamline pattern defined by curves
χ = constant in the (x, z)–plane is sketched in Figure 3.4.

3.1.3. SIDEWALL E1/4–LAYERS

The situation investigated in the previous subsection was unusual in the sense that
the geostrophic velocity was uniform everywhere and did not suffer a jump across
the boundary layer region. In more general situations that is not the case and the
jump is smoothed out in a wider boundary layer region, where the flow is quasi-
geostrophic.
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Figure 3.4 - The E1/3–shear layer for the solution (3.22) illustrating the streamlines
χ = constant of the ageostrophic flow driven by the Ekman layer fluid flux.

In order to appreciate the nature of these boundary layers, we consider the geo-
strophic motion uG = (uG(x, y), vG(x, y), 0) between stationary parallel plane
boundaries z = ±H with Ω = (0, 0, Ω) and Ω > 0. According to (3.5b,d) that flow
may be expressed in terms of a streamfunction in the form

uG = −∂yψ , vG = ∂xψ , where ψ = p/2ρΩ . (3.27a,b)

The associated vorticity ζ = (0, 0, ζ) given by (3.12b) is given by

ζ = ∇2
⊥ψ , where ∇2

⊥ ≡ ∂xx + ∂yy . (3.28a,b)

The streamfunction is at this stage undefined (p is as yet an unknown function of x
and y), leading to a situation often referred to as geostrophic degeneracy. It may be
resolved here by first noting that this is only a first approximation to the true solution
u = (u, v, w) of the Navier-Stokes equation (3.15a), in the sense that |u − uG| 

|uG|. Since w is small, the dominant balance in the z–component of the vorticity
equation (3.16a) in the mainstream is between two small terms:

−2 ∂zw = δ2
E∇2

⊥ζ . (3.29)

Integrating this equation with respect to z across the mainstream determines

−(wE|z=H − wE|z=−H) = Hδ2
E∇2

⊥ζ , (3.30a)

where wE|z=−H(= −wE|z=H) = δEζ/2 is the Ekman pumping velocity on the
lower (upper) boundary. It shows that the vorticity ζ satisfies

ζ = δEH∇2
⊥ζ (Ω > 0) . (3.30b)
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For unidirectional geostrophic flows uG = (0, vG(x), 0), the vorticity equation
(3.30b) can be integrated once giving

vG − VG = δEH
d2vG

dx2
, (3.31)

where VG is an arbitrary constant. This equation allows boundary layer structures of
the form

vG − VG ∝ exp[±(x/Δ)] , where Δ =
√

δEH = E1/4H , (3.32a,b)

which are often called E1/4–Stewartson layers.

To illustrate the idea, we adopt the split plane boundary geometry of the previous
section but assume instead that both the top (z = H) and bottom (z = −H) bound-
aries move together with velocity −(sgn x)V0(0, 1, 0). This is the planar version
of the other Stewartson (1957) split-disc problem. We assume that, far from the
discontinuity, the fluid moves with the boundary, specifically vG → −(sgn x)V0 as
|x| → ∞. The appropriate combination of solutions (3.32a) that meet that condition
and have vG and dvG/dx continuous at x = 0 is

vG = −(sgn x)V0 [1 − exp(−|x|/Δ)] . (3.33)

The corresponding Ekman suction velocities, which take account of the velocity
jumps at the boundaries, are

wE|z=∓H = ±δEV0

[
− 1

2Δ
exp

(
− |x|

Δ

)
+ δ(x)

]
. (3.34a)

Since (3.29) implies that the axial velocity w is linear in z, the velocity jumps (3.34a)
show that

w = 1
2
E1/4 V0 (z/H) exp(− |x|/Δ) (3.34b)

outside the E1/3–layer, where |x| � δS . The corresponding streamfunction χ for
u = −∂zχ and w = ∂xχ is

χ = − 1
2
δE V0 (z/H) (sgn x) exp(− |x|/Δ). (3.34c)

It is important to appreciate that (3.34c) determines the jump

[χ]+− = χ(x/Δ)↓0 − χ(x/Δ)↑0 = −δE V0 (z/H) (3.34d)

across x/Δ = 0. It means that jets emanate from sources at (0,−H) and (0, H)
of equal magnitude δEV0 but both directed towards the mid-plane z = 0. This flux
along x/Δ = 0 escapes from the E1/3–layer at a constant rate to provide the uniform
outflow u = 1

2
(sgn x) E1/2 V0 as x/Δ → 0. This efflux is returned symmetrically
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Figure 3.5 - The E1/4–shear layer streamlines χ = constant for the solution (3.34c)
valid in the regions δS 
 |x| 
 Δ. The streamlines for the Ekman layer flow
that drain it and the E1/3–shear layer that feeds it are also indicated. Note that all
streamlines pass through the E1/2 × E1/2–regions at (x, z) = (0,±H).

through the E1/4–layer and reabsorbed by the upper and lower boundary Ekman
layers from whence it is recirculated through the sources at (0,∓H), as indicated by
the streamline pattern in Figure 3.5.

In the thinner E1/3–layer, flow is made up in part by the quasi-geostrophic contribu-
tion (3.33), which has the expansion

vG = −V0

[
E1/12(x/δS) − 1

2
(sgn x)E1/6(x/δS)2 + O(E1/4)

]
, (3.35)

as well as an additional z–dependent ageostrophic part. The velocity in this layer is
dominated by the leading term O(E1/12V0) of (3.35). The second term O(E1/6V0)
turns out to be the same size as the E1/3–layer ageostrophic velocities predicted in
the previous subsection. This is significant because, though we have ensured that
vG and dvG/dx are continuous across x = 0, that is evidently not the case for
d2vG/dx2, which suffers a jump in value and must be eliminated by the lowest order
solution for that layer. The safest way to compute that solution is to solve the gov-
erning equations (3.15) using the Fourier transform method in conjunction with the
Ekman-layer jump condition across both the E1/3 and E1/4–layers simultaneously
as executed by Greenspan (1968). Nevertheless a detailed boundary layer analysis
more in the spirit of the development here is given by Moore & Saffman (1969).
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3.1.4. DIFFERENTIALLY ROTATING SPHERES:
THE PROUDMAN–STEWARTSON PROBLEM

An important example which may have relevance to motion in the Earth’s fluid core
is the steady axisymmetric slow motion in a shell induced by rotating the outer,
radius ro, and inner, radius ri, spherical boundaries at slightly different rates Ω (> 0)
and Ω + ωi about a common rotation axis. Relative to cylindrical polar coordinates
(s, φ, z) rotating in the frame fixed in the outer sphere, the fluid occupies the region
ri < r < ro, where r = (s2 + z2)1/2, and meets the boundary conditions u = 0 on
r = ri and u = (0, sωi, 0) on r = ri.

The only admissible geostrophic flow in a shell is azimuthal and independent of z
which we write in the form uG = (0, sωG(s), 0). According to (3.13), the θ–directed
(θ is the co-latitude) Ekman layer volume fluxes are

Qθi =
δE s

2
√

| cos θi|
(ωi − ωG) and Qθo = − δE s

2
√

| cos θo|
ωG (3.36a,b)

on the inner and outer spheres respectively, where

cos θi =
√

1 − (s/ri)2 , and cos θo =
√

1 − (s/ro)2 . (3.36c,d)

We define the cylinder s = ri tangent to the equator of the inner sphere to be the
tangent cylinder (see Figure 3.6).

The geostrophic velocity sωG behaves very differently inside and outside this tan-
gent cylinder. So if we consider a cylinder of radius s inside the tangent cylinder,
which intersects the inner and outer spheres, then the total radial fluid flux across it
vanishes. Since there is no radial component of the geostrophic velocity the values
of Qθi(s) and Qθi(s) must be equal and opposite and that determines the Proud-
man (1956) solution

ωi − ωG = ωi

√
| cos θi|

/[√
| cos θi| +

√
| cos θo|

]
for s < ri . (3.37a)

Outside the tangent cylinder, a cylinder s = constant only intersects the upper and
lower boundaries of the outer sphere and that determines

ωG = 0 for s > ri . (3.37b)

We sketch ωG versus s in Figure 3.7a. This profile can be recovered in full numerical
simulations at finite E (Dormy et al., 1998).

We consider the complete axisymmetric flow velocity in the form

u = (u, v, w) = (−s−1∂zχ, sω, s−1∂sχ) . (3.38a,b)
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Figure 3.6 - The shell geometry of the Proudman–Stewartson problem. The height
H(s) [see (3.41b)] both inside (s < ri) and outside (s > ri) the tangent cylinder
s = ri are indicated.

For ωi > 0 the Ekman flux Qθo(< 0) on the outer sphere is inwards towards the
axis. Since the total influx −2πsQθo is a decreasing function of s, fluid continually
escapes from the outer sphere Ekman layer and returns to the inner sphere as a purely
axial flow characterised by χ(s). Its value is determined by the total flux balance
2πsQθo = 2π

∫ s

0
sw ds = 2πχ, which yields

χ(s) = − 1
2
δEωi s

2
/[√

| cos θi| +
√
| cos θo|

]
for s < ri . (3.39a)

On entering the inner sphere Ekman layer the fluid is transported outwards Qθi(> 0).
On reaching s = ri we find that

χ(ri) = − 1
2
δEωi r

2
i r1/2

o (r2
o − r2

i )
−1/4 (3.39b)

but outside the tangent cylinder we have

χ(s) = 0 for s < ri . (3.39c)

That means that there is a return flow jet along the tangent cylinder. The fluid outside
the tangent cylinder is stagnant. The flow that we have described is the Proudman
(1956) solution of the problem. We sketch the meridional streamline pattern χ =

Evidently the boundary layer structure on the tangent cylinder is very complicated
and was the problem addressed by Stewartson (1966). We first note that the φ–
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Figure 3.7 - The Proudman solution. (a) The geostrophic angular velocity ωG (3.37)
plotted versus s. (b) The meridionanal streamlines χ = constant (3.39a). Note the
location of the jet along the tangent cylinder s = ri, which returns the volume flux
−2πχ(ri) (3.39b) from the Ekman layer on the inner sphere at its equator to the
outer sphere Ekman layer.

components of the equation of motion (3.15a) and vorticity (3.16a) reduce to

−2 ∂z(χ/s) = δ2
E (Δ − s−2)(sω) , (3.40a)

−2 ∂z(sω) = − δ2
E (Δ − s−2)2(χ/s) (3.40b)

respectively [cf. their planar counterparts (3.18)]. The quasi-geostrophic layers can
be analysed on the basis that ω ≈ ωG is independent of z. Then (3.40a) can be
integrated with respect to z between the Ekman layer boundaries. It determines

H δ2
E

[
1

s

d

ds

(
s

d

ds

)
− 1

s2

]
(sωG) =

{
−2(Qθo + Qθi) for s < ri ;

−2Qθo for s > ri ,
(3.41a)

where

H(s) =

{
(ro cos θo − ri cos θi) for s < ri;

ro cos θo for s > ri.
(3.41b)

Here and henceforth we restrict θi(s) and θo(s) to the range 0 up to π/2.

In the vicinity of the tangent cylinder, it is sufficient to take local Cartesian coordi-
nates (x, y, z), where x = s − ri and the y–axis points in the φ–direction. Locally
the inner sphere boundary is z ≈

√
−2rix giving cos θi ≈

√
−2x/ri for x ≤ 0.

Thus correct to lowest order (3.41a) reduces to

Δ2 d2ωG

dx2
− ωG√

cos θo

=

{
(−2x/ri)

−1/4 (ωG − ωi) for s < ri;

0 for s > ri,
(3.42)

in which H(s), Δ(s) =
√

δEH and θo(s) are all evaluated on the tangent cylinder
s = ri. The structure of (3.42) is most informative. Outside the tangent cylinder the
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Figure 3.8 - The quasi-geostrophic Stewartson shear layers. (a) The geostrophic
angular velocity ωG, which solves (3.42), plotted versus x = s − ri in both the E1/4

and E2/7–layers exterior and interior to the tangent cylinder. (b) The corresponding
meridional streamlines χ = constant.

quasi-geostrophic layer is a standard E1/4–layer of width O(Δ(cos θo)
1/4). Inside,

however, the mass flux Qθi is linked to the weak singularity of (ri/x)1/4 which is
manifest by the large term on the right of (3.42). That dominates over the influence
of the mass flux Qθo. The remaining two terms in (3.42) show that the boundary
layer inside the tangent cylinder has width O(Δ8/7/r

1/7
i ), which is the width of the

E2/7–Stewartson layer. Stewartson (1966) showed that the jump in ωG is largely
eliminated in the exterior and wider E1/4–layer. This is affected by the mass flux
of the Proudman tangent cylinder jet escaping into it to be reabsorbed into the outer
sphere Ekman layer. The remaining jump in dωG/dx is met across the thinner inte-
rior E2/7–layer. The resulting profile of ωG in the E2/7 and E1/4–layers is sketched
in Figure 3.8a, while the resulting meridional streamline pattern χ = constant is
illustrated in Figure 3.8b.

Stewartson (1966) also analysed the ageostrophic E1/3–layers width δS = (δ2
E H)1/3.

Now the equator (x, z) = 0 of the inner sphere is even more singular than the
Proudman solution suggested. The difficulty may be traced to the Ekman-flux term
−2Qθi/(δEri) = (−2x/ri)

−1/4(ωG − ωi) in (3.42). In the case of the Proudman
solution, this tends to a finite limit as x ↑ 0 by demanding that ωG → ωi simultane-
ously. In the case of the Stewartson extension the difference ωi − ωG though small
is finite tending to zero with E. Thus the volume flux in the Ekman layer exceeds
the O(δEriωi) estimate of Proudman and leads to the streamline deflection in the
E2/7–layer indicated in Figure 3.8b. The Ekman flux must be eventually ejected
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x

x = –z2/2ri

z

2

Figure 3.9 - The boundary layer structure on the tangent cylinder x = s − ri = 0
in the vicinity of the equator z = 0 of the inner sphere. The inner sphere boundary
is x = −1

2
z2/ri. The intersection of the Ekman layer thickness δE⊥ = δE(ri/z)1/2

and the similarity region |x| < O((δ2
Ez)1/3) determines the equatorial Ekman layer

identified by the shaded region. Eventually, as z is increased, the singularity fills the
Stewartson E1/3–layer of width δS = (δ2

EH)1/3.

at the equator into the similarity sublayer of x–width O((δ2
Ez)1/3) [see (3.25b)] at

distance z from the equator along the tangent cylinder. The similarity sublayer in-
tersects the inner sphere z ≈

√
−2rix, when z = O(r

3/5
i δ

2/5
E ), where it has x–width

O(r
1/5
i δ

4/5
E ). From another point of view the Ekman layer thickens as the equator

is approached exhibiting according to (3.13b) an x–width O(δE⊥) = O(δE

√
ri/z).

So on decreasing z the Ekman layer thickens and merges with the similarity layer at
the same order of magnitude of z as that layer attaches itself to the inner sphere as
illustrated on Figure 3.9. Whereas the Proudman flux escapes into the exterior E1/4–
layer (see Figure 3.8b), the additional flux fixed by the interior E2/7–layer is returned
to the inner sphere Ekman layer in an eddy close to the equatorial Ekman layer of lat-
itudinal extent O(r

3/5
i δ

2/5
E ) = O(E1/5) and width O(r

1/5
i δ

4/5
E ) = O(E2/5). Though

Stewartson (1966) was unable to provide the solution in this layer, which remains a
challenging unsolved problem, he does indicate the nature of the similarity solution
in its vicinity, which determines the eddy structure illustrated in Figure 3.10. The
O–type eddy stagnation point is located inside the equatorial Ekman layer. Stew-
artson’s asymptotic analysis of the various boundary layers reveals a most exotic
collection of powers of E.
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E1/5

E2/5

Figure 3.10 - The meridional stream-
lines χ = constant of the similarity
solution stemming from the smaller
E2/5 × E1/5–equatorial Ekman layer.

3.2. BOUNDARY AND SHEAR LAYERS
IN ROTATING MHD FLOWS

In this section we investigate the role of magnetic fields B in boundary layer theory.
The important new ingredient is the presence of the Lorentz force j × B, where
μ j = ∇ × B and μ is the magnetic permeability (as derived in Section 1.1.1). As
in the case of non-magnetic boundary layer theory a key objective is to obtain jump
conditions across the layer. So for example, the analogous result for electric current
flow, which corresponds to the Ekman jump condition (3.2), is[

n · j
]+

− ≡ n · j
∣∣
z/δ→∞ − n · j

∣∣
z=0

= n · ∇ × (J × n) = −∇‖ · J , (3.43a)

where

J =

∫ z/δ→∞

0

(j‖ − j0‖) dz (3.43b)

in which j0 is the mainstream electric current and the subscript ‖ denotes the com-
ponent parallel to the boundary. The magnitude of the electrical conductivity of the
boundary plays a crucial role in determining the strength of the boundary layer. Es-
sentially insulating boundaries lead to the most intense layers as electric currents
remain in the layers being unable to leak into the boundaries: n · j| z=0 = 0. As
the boundary conductivity increases, the boundary layer electric current J decreases
and is almost completely absent in the case of perfectly conducting boundaries. All
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strong electric currents reside as surface currents in the solid conductor. We explore

¨ ¨

3.2.1. THE HARTMANN LAYER

The nature of the Hartmann boundary layer is most readily appreciated in plane layer
geometry. Relative to Cartesian coordinates (x, y, z) we consider fluid of constant
density in the half-space z > 0. The fluid, which is electrically conducting with
conductivity σ, permeability μ and resistivity η = 1/σμ, is permeated by a uniform
transverse applied magnetic field (0, 0, B0). Away from the boundary the fluid is in
uniform steady motion u0 = (u0, 0, 0), which generally perturbs the magnetic field
leading to the form B0 = (b0(z), 0, B0). In the presence of the pressure gradient
∇p0 = (−G, 0, ∂zp0), the uniform component −G applied in the x–direction must
be balanced by the Lorentz force j0 × B0, in which j0 = (0, j0, 0) is a uniform
electric current satisfying j0B0 = −G. The z–component of the force balance shows
that the total pressure pT0 ≡ p0+pm0 is independent of z, where pm0 = |B0(z)|2/2μ
is the magnetic pressure. According to Ampère’s law (1.3) μj0 = ∇ × B0, we have
db0/dz = μj0 and so b0(z) = b0(0) + μj0z. The realised magnitude of the flow is
related to the uniform electric field E0 = (0, E0, 0). According to Ohm’s Law (1.7)
E0 = −u0 × B0 + j0/σ and this determines E0 = u0B0 + j0/σ.

To consider the Hartmann layer we set

u = (u(z), 0, 0) , b = (b(z), 0, B0) , (3.44a,b)

j = (0, j(z), 0) , E = (0, E0, 0) . (3.44c,d)

Then the x–component of the equation of motion, the y–components of Ampère’s
and Ohm’s laws yield

0 = G + B0j + ρν
d2u

dz2
, j =

1

μ

db

dz
= σ (E0 − B0u) (3.45a,b)

respectively. These combine to give the single equation

δ2
H

d2u

dz2
− (u − u0) = 0 , where δH =

√
ρνμη

|B0|
(3.46a,b)

and u0 =
E0

B0

+ δ2
H

G

ρν
, j0 = σ(E0 − B0u0)

(
= − G

B0

)
. (3.46c,d)

Here u = u0 is the mainstream velocity outside the Hartmann layer, which sig-
nificantly is independent of z by analogy with the Proudman–Taylor theorem for
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these ideas in the non-rotating context (see, for example, the books by Roberts,
1967a; Muller & Buhler, 2001) before considering rotating MHD flows (see, for
example, Acheson & Hide, 1973).

rotating fluids (see Section 3.1.1).
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If the boundary is at rest with u(0) = 0, the Hartmann boundary layer solution
satisfying u → u0 as z/δH ↑ ∞ is

u − u0 = −u0 exp(−z/δH) , (3.47a)

which identifies δH as the Hartmann layer width. It determines the magnetic field

b − b0(z) = − (u0B0/η)δH exp(−z/δH) = (δHB0/η) (u − u0) . (3.47b)

It shows that the magnetic field and velocity jumps across the boundary layer are
related by

b0(0) − b(0) =
δHB0

η
u0 = (sgn B0) Pm1/2√ρμ u0 , (3.48a)

where Pm ≡ ν/η is the magnetic Prandtl number.

Since the magnetic field jump (3.48a) depends on Pm, its value is sensitive to both
ν and η even in the perfect fluid limit ν ↓ 0 and η ↓ 0. Furthermore we also can
determine the electric current deficit J =

∫ ∞
0

(j − j0)dz in terms of the volume flux
deficit Q =

∫ ∞
0

(u − u0)dz from (3.48a). It is

J = −σB0Q , where J = [b0(0) − b(0)]/μ , Q = − δHu0 . (3.48b,c,d)

Other than the nature of the boundary layer structure, the most striking feature of the
solution (3.47) is the dependence of the mainstream velocity u0 on the magnitude
of the electric field E0 [see (3.46c)]. Its value is sensitive to the electromagnetic
boundary conditions. If, for example, the boundary is a perfect conductor then E0 =
0 and whence u0 = δ2

HG/ρν. Note also that (3.45b), used in conjunction with
the no-slip boundary condition u(0) = 0, yields the perfect conductor boundary
condition db/dz(0) = 0. If on the other hand the boundary is an insulator, no
electric current can escape into the region z < 0 and we must consider carefully
how the currents return elsewhere. Indeed in the well known case of channel flow
(Müller & Bühler, 2001), where there is a second stationary insulating boundary at
z = 2H (� δH), we may form the symmetric (u(2H − z) = u(z), b(2H − z) =
−b(z)) composite solution

u ≈ u0 {1 − [exp(−z/δH) + exp((z − 2H)/δH)]} , (3.49a)

b ≈ μj0(z − H) − (u0B0/η)δH [exp(−z/δH) − exp((z − 2H)/δH)] . (3.49b)

The requirement that no net electric current leaves the system (
∫ 2H

0
jdz = 0) is

effected by the insulating boundary conditions b(0) = b(2H) = 0, which is met
when

j0 ≈ −σu0B0/M , where M = H/δH = H |B0| /
√

ρνμη (3.50a,b)
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is the Hartmann number. Accordingly the electric current j0 in Ohm’s law (3.46d) is
small implying E0 ≈ u0B0. Furthermore the dynamical property j0 = −G/B0, used
in conjunction with (3.50a), determines the mainstream velocity u0 ≈ Mδ2

HG/ρν.
Significantly this is a factor M larger than the value u0 ≈ δ2

HG/ρν for the case of
perfectly conducting boundaries (see (3.46c) with E0

This sensitivity of the magnitude of the flow to the boundary conditions is remark-
able. Essentially strong boundary layers are possible at insulating boundaries be-
cause the electric currents required to support the Hartmann layer cannot leak into
the boundary, as they can at conducting boundaries. For given G the flow rate de-
creases as the conductivity of the boundary increases.

Another pair of examples that illustrates the dependence on boundary conductivity is
the following. Firstly, consider the motion caused by moving insulating boundaries
at z = 0 and 2H with velocities u = 0 and 2U0 respectively, but without a pressure
gradient, G = 0. For this case we have the anti-symmetric (u(2H − z) − U0 =
−[u(z) − U0], b(2H − z) = b(z)) composite solution

u − U0 ≈ −U0 [exp(−z/δH) − exp((z − 2H)/δH)] , (3.51a)

b ≈ (U0B0/η) δH {1 − [exp(−z/δH) + exp((z − 2H)/δH)]} , (3.51b)

in which we note that j0 = 0, E0 = u0B0 and u0 = U0. Secondly, we consider
instead the asymmetric configuration, in which the stationary boundary at z = 0 is
perfectly conducting, while the moving boundary at z = 2H is an insulator. This
problem has the composite solution

u ≈ 2U0 exp((z − 2H)/δH) , (3.52a)

b ≈ 2(U0B0/η)δH [1 − exp((z − 2H)/δH)] , (3.52b)

which satisfies, up to the neglect of exponentially small terms, the magnetic bound-
ary conditions db/dz(0) = b(2H) = 0; we note that E0 = j0 = u0 = 0. This
example shows the dominating influence of the conducting boundary, which essen-
tially controls the electric field. In turn its effect is to lock the mainstream flow onto
the conducting boundary.

3.2.2. DIFFERENTIALLY ROTATING SPHERES

The example cited at the end of the previous section relates to the geophysical and
planetary configurations of a shell of electrically conducting fluid confined between
an electrically conducting inner solid core and an outer insulating mantle. The x–
directed flow in our example is analogous to an azimuthal flow forced by differ-
entially rotating the inner and outer boundaries. Planar extensions in the rapidly
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M–2/3

M–1/3

M–1/2

M–1 ro––
zo

Figure 3.11 - The dipole magnetic field permeating the spherical shell. The mag-
netic field line touching the outer sphere r = ro is the location of the super-rotating
MHD-shear layer width O(LM−1/2). The dimensions of the equatorial Hartmann
layer are also indicated.

rotating limit that relate to the planetary problem are discussed in Sections 3.2.3 and
3.2.4 below.

Here we consider a shell model studied by Dormy et al. (1998) and Dormy et
al. (2002) in the opposite slow rotation limit; though to simplify our outline de-
velopment, we modify some of the details of their model. We suppose that the inner
solid core radius r = ri is a stationary ω = 0 perfect conductor, while the outer solid
mantle of inner radius r = ro is an insulator rotating at angular velocity ω = ωo.
Fluid of finite electrical conductivity occupies the shell ri < r < ro. We suppose
that the entire system is permeated by an axisymmetric magnetic dipole Bp whose
source is at the centre of the solid conductor (see Figure 3.11). Relative to the cylin-
drical polar coordinates of Section 3.1.4, it is

BP = s−1 ∇A × eφ = L3B0

(
3sz

2r5
, 0 ,

2z2 − s2

2r5

)
, (3.53a)

where L = ro − ri (say) and B0 are typical length and magnetic field strengths,

A = 1
2
L3B0 r−3s2 and eφ = ( 0 , 1 , 0 ) (3.53b,c)

is the unit vector in the azimuthal direction.
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For slow motion we may linearise the governing equations and, for the flow velocity,
magnetic field and electric current, write

u = sω eφ , b = BP + b eφ , j = (μs)−1 ∇(sb) × eφ , (3.54)

where ω = ω(s, z), b = b(s, z) and j = j(s, z). Ohm’s law determines the electric
field

E = −u × BP + σ−1 j = −ω∇A + η s−1 ∇(sb) × eφ . (3.55a)

Using ∇ × E = 0, we obtain the steady magnetic induction equation

η
(
Δ − s−2

)
b + sBP · ∇ω = 0 . (3.55b)

Since the Lorentz force is j × Bp = [(μs)−1BP · ∇(sb)]eφ and there is no az-
imuthal pressure gradient, the φ–component of the equation of motion becomes

ν
(
Δ − s−2

)
(sω) + (ρμs)−1 BP · ∇(sb) = 0 . (3.56)

For the coupled system of equations (3.55b), (3.56), the natural definition of the
Hartmann number is

M = L/δH , where as usual δH =
√

ρνμη/|B0| (3.57a,b)

[cf. (3.50b)].

Our system is very close to the situation described by the solution (3.52). There is
no electric field in the central solid conductor and so in the large Hartmann number
limit, the flow is virtually locked to the conductor. According to the magnetic induc-
tion equation (3.55b) we have that BP · ∇ω ≈ 0 in the mainstream. Hence, since
ω ≈ 0 at the edge of the inner boundary Hartmann layer, it remains so throughout the
mainstream. In consequence Hartmann layer on the outer boundary must support the
magnetic field jump −(sgn zo)so(ωoB0/η)δH ≡ −[sgn (zoB0)](ν/η)1/2√ρμ soωo

(see (3.68) below) between the insulator and the mainstream. Now in the main-
stream the Lorentz force in (3.56) vanishes (BP · ∇(sb) ≈ 0) and so sb is almost
constant on field lines. Since b = 0 in the insulator, the magnetic field jump condi-
tion shows that sb is proportional to s2

o as r ↑ ro from the mainstream. Since A is
also proportional to s2

o on r = ro, it follows that sb is proportional to A everywhere
in the mainstream. Consequently, b takes the value

b ≈ (sgn z)
r3
oωoB0δH

η

s

r3
with j ≈ (sgn z) 2σ

r3
oδH

L3
ωo Bp (3.58a,b)

at all points on field lines that pass through the outer sphere. (Since δH |B0| =√
ρνμη, these results do not depend on the magnitude of B0 but only its sign.) This
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region is bounded by the field line ros
2 = r3, which is tangent to the outer sphere at

the equator. On all field lines on the other side of it which close within the fluid, the
symmetry conditions on the equator show that there b ≈ 0 and j ≈ 0.

We consider carefully the electric current flow in the system. The current flow
(3.58b) enters the outer Hartmann layer, where it then flows consistent with (3.43)
to the equator. It is returned along the tangent line ros

2 = r3 as a current sheet to the
perfectly conducting inner sphere. There is becomes a surface current, which flows
towards the poles but simultaneously feeds the mainstream current flow (3.58b).

The current sheet on the tangent line has finite width O(LM−1/2). Across it the
magnetic field must jump from zero to the value determined by (3.58a). Dormy et
al. (2002) studied this layer in detail and showed that the ensuing Lorentz force
made the fluid move ω �= 0 in this shear layer and in parts at angular velocities in
excess of the outer sphere. This interesting result provides a powerful illustration of
the fact that Lenz’s law, which states that the Lorentz force opposes motion, is only
true in some mean sense but does not necessarily apply everwhere.

Finally we comment on the nature of the Hartmann layer on the outer boundary,
whose unit normal directed into the fluid is n = −r/r. The planar analysis of
Section 3.2.1 continues to apply provided that only the normal component of the
applied magnetic field is employed in the boundary layer calculation. Thus the
Hartmann layer thickness (3.46b) is replaced by

δH⊥ =
√

ρνμη
/
|n · BP |r=ro , (3.59)

which, in view of the definition (3.53a) of BP , takes the value δH⊥ = (ro/zo)δHe,
where δHe = (ro/L)3δH is the Hartmann layer width based on (L/ro)

3B0, which
is twice the magnitude of the equatorial magnetic field. Thus the Hartmann bound-
ary layer thickness δH⊥ is proportional to ro/zo. It thickens as the equator is ap-
proached becoming singular on the equator zo = 0. It is this singularity which
triggers the tangent field line shear layer, just as the equatorial Ekman layer does in
the non-magnetic Proudman–Stewartson problem of Section 3.1.4. Indeed Dormy
et al. (2002), following Roberts (1967b), determine the solution in the ensuing equa-
torial Hartmann layer of width O((roδ

2
He)

1/3) and latitudinal extent O((r2
oδHe)

1/3).

3.2.3. THE EKMAN–HARTMANN LAYER

We now extend the analysis of Section 3.2.1 to include the effect of vertical rotation
Ω = Ωn = (0, 0, Ω) and to investigate the Ekman–Hartmann boundary layer that
forms above a stationary plane z = 0 (Gilman & Benton, 1968). In the mainstream,
the pressure gradient ∇p0 = (−Gx,−Gy, ∂zp0) has constant x and y–components
and a steady electric current j0 = (jx0, jy0, 0) drives the uniform steady magneto-
geostrophic flow u0 = (u0, v0, 0). The realised steady magnetic field has the form
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B0 = (bx0(z), by0(z), B0), while the electric field is E0 = (Ex0, Ey0,−u0by0+v0bx0)
has constant x and y–components too (∇ × E0 = 0). The equation of motion,
Ampère’s and Ohm’s law give the mainstream balance

2ρΩn × u0 = G + B0j0 × n , j0 × n =
1

μ

db0

dz
= σ(E0 × n − B0u0) ,

(3.60a)
where G = (Gx, Gy, 0) and b0 = (bx0(z), by0(z), 0). Accordingly, u0 is related to
G and E0 by

2 (sgn Ω)n × u0 + Λu0 =
G

ρ|Ω| + Λ
E0 × n

B0

, (3.60b)

where Λ =
σB2

0

ρ|Ω| =
δ2
E

δ2
H

(3.60c)

is the Elsasser number. The limits Λ = 0 and 1/Λ = 0 recover the earlier relations
(3.5b,d) and (3.46c) respectively.

To resolve the Ekman–Hartmann layer we set

u = (u(z), v(z), 0) , B = (bx(z), by(z), B0) , j = (jx(z), jy(z), 0) . (3.61)

Then the (x, y)–components of the equation of motion, Ampère’s and Ohm’s laws
yield

2 (sgn Ω)n × (u − u0) = −Λ (u − u0) + δ2
E

d2u

dz2
, (3.62a)

σ−1(j − j0) × n = η
d

dz
(b − b0) = −B0 (u − u0) . (3.62b)

From (3.62b) we can determine the electric current deficit J =
∫∞

0
(j − j0)dz in

terms of the volume flux deficit Q =
∫∞

0
(u − u0)dz. It is

μJ × n = b0(0) − b(0) = −B0Q/η . (3.63)

To determine the solution of (3.62a), we proceed as in the Ekman layer case and
write Z ≡ u + iv, Z0 ≡ u0 + iv0. Then the corresponding extension of (3.6) is

δ2
E

d2Z

dz2
− (Λ + 2 (sgn Ω) i ) (Z − Z0) = 0 . (3.64)

The solution which satisfies u = 0 on z = 0, and decays to zero as z tends to
infinity is

Z = Z0 {1 − exp[−(1 + i (sgn Ω) tan Υ)z/δEH ]} (0 ≤ Υ ≤ π/4) , (3.65a)

δ2
E/δ2

EH = cot Υ = 1
2

(
Λ +

√
Λ2 + 4

)
, 2 cot 2Υ = Λ . (3.65b,c)where
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The solution (3.65a) may be used to calculate the volume flux deficit

Qx + iQy = − 1
2
δEHZ0 {1 + exp [− 2 i (sgn Ω) Υ]}

= [− δ
‖
Q + i (sgn Ω) δ

⊥
Q] Z0 . (3.66a)

where δ
‖
Q =

δ2
E

δEH

√
Λ2 + 4

, δ
⊥
Q =

δEH√
Λ2 + 4

. (3.66b,c)

These two length scales have the limiting forms

δ
‖
Q ≈

{
δHΛ1/2/2 for Λ � 1;

δH for Λ 	 1 ;
δ
⊥
Q ≈

{
δE/2;

δE/Λ3/2.
(3.66d,e)

Expressed in terms of real variables, (3.66a) gives

Q = − δ
‖
Q u0 + (sgn Ω) δ

⊥
Q n × u0 (3.67a)

and for the current flux deficit (3.63) gives

J = μ−1 n × [b0(0) − b(0)] = σB0

[
δ

‖
Q n × u0 + (sgn Ω) δ

⊥
Q u0

]
. (3.67b)

Note that the possibilities that Ω and B0 are negative is accommodated by our for-
mulation. In addition, (3.65a) shows that we continue to have an Ekman type spiral,
while (3.66a) demonstrates that there is mass flux in the boundary layer transverse
to the mainstream geostrophic flow. Importantly in the non-rotating limit Λ ↑ ∞,
(3.67b) generalises (3.48a) to give the tangential magnetic field jump

b0(0) − b(0) = (δHB0/η)u0 = (sgn B0) Pm1/2√ρμu0 (3.68)

across the Hartmann layer. Note the dependence of the magnetic field jump on the
magnetic Prandtl number Pm (3.48b), which should be compared with the Alfvén
velocity scaling in (3.117b) below.

Evidently the complete solution of any particular problem is quite complicated and
involves the considerations appropriate to both Ekman and Hartmann flows. Thus,
whereas we were free to specify the pressure gradient −G in the Hartmann case, its
value is part of the solution in the Ekman case. In general, for Ekman–Hartmann
case, we are not free to specify −G in its entirety. Of course, we have to take due
care with the electrical boundary conditions as well. Interestingly when the main-
stream flow u0 varies on length scales large compared to δEH , while the applied
magnetic field B0 is held constant, the obvious generalisations of (3.14), which
determine the Ekman-Hartmann pumping velocity and the normal electric current
density jumps from (3.2) and (3.43), are

n · u = δ
⊥
Q(sgn Ω)n · ∇ × u0 ,

[
n · j
]+
− = σB0 δ

‖
Q n · ∇ × u0 (3.69a,b)
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As Λ increases, the suction decreases and vanishes
in the non-rotating limit, while as Λ decreases, the normal electric current jump
decreases and vanishes in the non-magnetic limit.

When Ω and B0 are not parallel to n, the boundary layer calculation of this section
still holds but with the B0 and Ω replaced by the normal components B0⊥ = n · B0

and Ω⊥ = n · Ω. Accordingly δE becomes δE⊥ [see (3.13b)], δH becomes δH⊥
[see (3.59)] and in turn, Λ becomes Λ⊥ = δ2

E⊥/δ2
H⊥ [see (3.60c)]. With these values

used in (3.65b), its solution δEH is replaced by δEH⊥ and, in turn, the solutions δ ‖
Q

and δ⊥
Q of (3.66b,c) are replaced by δ

‖
Q⊥ and δ

⊥
Q⊥. Then all our formulae (3.67) to

(3.69a,b) remain valid provided all the new ⊥–values are employed. When B0⊥ and
Ω⊥ are functions of position, we must return to the primitive formulae (3.2), (3.43)
and take proper account of their spatial derivatives; Loper (1970) investigated the
case of a spherical boundary.

3.2.4. ROTATING MHD FREE SHEAR LAYERS; Λ � 1

Our main interest in this section is with the MHD extension of the Proudman-
Stewartson problem of the flow driven by differentially rotating two concentric
spheres, which we discussed in Section 3.1.4, with particular consideration of the
free shear layers on the tangent cylinder. The MHD extension of Stewartson’s (1957)
axisymmetric split disc problem was investigated by Vempaty & Loper (1975, 1978).
They considered the case of B0 parallel to the rotation axis Ω. Since the magnetic
field has no component transverse to the tangent cylinder, the model fails to cap-
ture important features of the geophysical system. This aspect, however, has been
addressed by Hollerbach (1994a) and Kleeorin et al. (1997), who considered an ap-
plied axisymmetric dipole field. Furthermore non-axisymmetric flows driven by an
asymmetric forcing (as opposed to differentially rotating the inner and outer bound-
aries) have also been investigated by Hollerbach (1994b) and Soward & Hollerbach
(2000).

The key ingredient in the spherical model is the radial magnetic field crossing the
tangent cylinder. For that reason Hollerbach (1996) considered a plane layer ge-
ometry with a transverse magnetic field because that removes many complications
associated with the spherical geometry.

In order to identify the main features of the shear layer structure found by Kleeorin
et al. (1997), we take Hollerbach’s (1996) plane layer geometry with Ω = (0, 0, Ω)
and Ω > 0. We outline how aspects of the ageostrophic and quasi-geostrophic
analyses of Sections 3.1.2 and 3.1.3 generalise to the case of an applied transverse
magnetic field (B0, 0, 0) in the small Elsasser number limit. We consider a duct
geometry −H < z < H and −L < x < L but emphasise that we continue to base

© 2007 by Université Joseph Fourier

(see Acheson & Hide, 1973).



146 Andrew SOWARD & Emmanuel DORMY

our Ekman number E (3.20b) and Hartmann number M (3.50b) on the length H .
We will assume that the region exterior to the duct is split across the plane x = 0.
The exterior region x < 0 is a stationary solid perfect conductor, while that in x > 0
is a solid insulator moving with slow velocity (0, V0, 0), in the sense that we may
linearise the governing equations. There is no applied pressure gradient G = 0 and
so motion is driven entirely by the moving boundary.

From a general point of view, we may use the 2–dimensional representation (3.17)
for the flow velocity introduced in Section 3.1.2 with the corresponding forms

B − B0 = (− ∂za, b, ∂xa) , E = (− ∂xϕ, 0, − ∂zϕ) (3.70a,b)

for the perturbation magnetic and electric fields. Then the y–component of the lin-
earised equations of motion and vorticity become

−2 ∂zχ = Λ (η/B0) ∂xb + δ2
E Δv , (3.71a)

−2 ∂zv = −Λ (η/B0) ∂xΔa − δ2
E Δ Δχ . (3.71b)

The x and z–components of the linearised Ohm’s law give

−∂xϕ = − η ∂zb , −∂zϕ − B0v = − η ∂xb . (3.72a,b)

Ellimination of the electric potential ϕ in (3.72a,b) and the y–component of Ohm’s
law give

0 = B0 ∂xv + η Δb and 0 = B0 ∂xχ + η Δa (3.73a,b)

respectively.

When Λ � 1 the steady mainstream velocity away from any boundary or shear
layers is quasi-geostrophic dependent only on one coordinate, namely x. Under this
1–dimensional assumption, the quasi-geostrophic flow is uG = (0, vG(x), 0). The
induced magnetic field b however is 2–dimensional and according to (3.73a) satisfies
the Poisson equation

Δb = − B0

η

dvG

dx
(3.74)

subject to the appropriate boundary condititions on the duct boundary. Use of the
Green’s function solution for b, enables an intergro-dfferential equation to be ob-
tained for vG as Kleeorin et al. (1997) explain..

Since the boundary in the region x < 0 is a perfect conductor, the electric field in
this region is virtually zero (ϕ ≈ 0) and there is no fluid motion (vG ≈ 0). So in the
vertical shear layer at x = 0, we may make the usual boundary layer approximation
that ∂/∂x 	 ∂/∂z. Accordingly we neglect the vertical component of electric field
−∂zϕ in (3.72b) to obtain

η ∂xb = −B0vG , (3.75a)
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in which ∂xb, like vG, is a function of x alone. Substitution of this result into the
y–component of the equation of motion (3.71a) yields

− 2

δ2
E

∂zχ = − 1

δ2
H

vG +
d2vG

dx2
(Ω > 0) , (3.75b)

which shows that the x–component of velocity u = −∂zχ is also only a function of
x. In fact the symmetry of our system about the mid–plane indicates that χ(x, z) =
−zu(x). Evidently (3.75b) is simply the Hartmann balance (3.46a) with the Coriolis
acceleration added.

We now assume that there are Ekman layers on the top and bottom boundaries z =
±H of the shear layer. According to (3.9b), the x–directed volume flux in the bottom
boundary z = −H is

Q =

{
− 1

2
δE vG for x < 0 ;

− 1
2
δE (vG − V0) for x > 0 .

(3.76)

A similar flux is found on the top boundary. The condition that there is no total
x–directed mass flux is that Q+Hu = 0 or equivalently χ(x,±H) = ±Q(x). Used
in conjunction with (3.75), we obtain the MHD extension of (3.31), namely

d2vG

dx2
− vG

Δ2
M

=

⎧⎨
⎩

0 for x < 0 ;

− V0

Δ2
for x > 0 ,

(3.77a)

where
1

Δ2
M

=
1

Δ2
+

1

δ2
H

=
1

E1/2H2

(
1 +

Λ

E1/2

)
(3.77b)

and Δ =
√

δEH is the E1/4–Stewartson layer thickness (3.32b). The solution of
(3.77a) analogous to (3.33) is

vG ≈
{

1
2
VM exp(x/ΔM ) for x < 0 ;

VM

[
1 − 1

2
exp(−x/ΔM )

]
for x > 0 ,

(3.78a)

where
VM = V0

/(
1 + ΛE−1/2

)
. (3.78b)

It describes a free shear layer of width ΔM . The corresponding ageostrophic velocity
component u = −Q/H , namely

u =

{
1
2
E1/2 vG for x < 0 ;

1
2
E1/2 (vG − V0) for x > 0 .

(3.78c,d)
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is readily obtained from (3.76). As x/ΔM ↓ −∞, we have vG → 0 and u → 0
compatable with the absense of motion in the mainstream x < 0. As x/ΔM ↑ ∞,
we have vG → VM and u → −Λ VM/2 and they provide boundary conditions for the
mainstream problem in x > 0. A further shear layer of width ΔM exists at x = L,
but its nature will depend on the magnitude of the vertical electric field −∂zϕ there.

For Λ � E1/2 the shear layer at x = 0 reduces to an E1/4–Stewartson layer. As
the Elsasser number Λ increases, the free shear layer width ΔM decreases in con-
cert with the magnetogeostrophic velocity VM . For Λ 	 E1/2 the layer becomes
a weak Hartmann layer with VM ≈ (E1/2/Λ)V0 (� V0). As in the case of the
E1/4–Stewartson layer, some important physical quantities derived from the solu-
tion (3.78a) suffer unacceptable discontinuities at x = 0 (e.g. d2vG/dx2). Provided
that Λ � E1/3 these are resolved in ageostrophic E1/3–Stewartson sublayers (see

This restriction on Λ stems from the requirement that the quasi-
geostrophic shear layer width ΔM be large compared to E1/3H (see Figure 3.12a).
When Λ = O(E1/3) the two sets of shear layers merge and for Λ 	 E1/3 the quasi-
geostrophic layers are lost completely. Similar remarks apply to the boundary layer
structures on the sidewall x = L, −H ≤ z ≤ H .

When Λ 	 E1/3 the ageostrophic apparatus of Section 3.1.2 may be adapted. Indeed
the governing equations (3.18a,b) are simply supplemented by the Lorentz force and
according to (3.71) and (3.73) become

−2 ∂zχ = −Λ v + δ2
E ∂xxv and − 2 ∂zv = Λ ∂xxχ − δ2

E ∂xxxxχ .
(3.79a,b)

Just as before, the streamfunction χ is coupled to the velocity v by the Ekman suction
boundary condition. The main point to appreciate is that the mainstream velocity VM

defined by (3.78b) is small: VM/V0 = E1/2/Λ and that v just outside the top and
bottom Ekman layers is small too for |x| 	 E1/2, as confirmed by (3.85) below.
Accordingly the boundary condition (3.21) is replaced by

w = ± 1
2
δEV0 δ(x) on z = ±H . (3.80)

The solution corresponding to (3.22) is

w =
δEV0

2π

∫ ∞

0

cos(kx) sinh
[

1
2
k(Λ + δ2

Ek2)z
]

sinh 1
2
k(Λ + δ2

Ek2)H
dk . (3.81a)

By performing a binomial expansion of the denominator this may expressed in the
alternative form

w = − δEV0

∞∑
n=−∞

W(x, Zn) , Zn = z − (2n + 1)H , (3.81b)
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Figure 3.12 - The duct shear layer structure including the horizontal HE1/2–Ekman
layers. The vertical layers are for: (a) the case E1/2 � Λ � E1/3, the quasi-
geostrophic H(E/Λ)1/2–Hartmann layers and the ageostrophic HE1/3–Stewartson
layers; (b) the case E1/3 � Λ � 1, the HΛ–magnetogeostrophic layers, the hybrid
E1/3–Hartmann layer stumps and the H(E/Λ)1/2–Hartmann layer at the sidewall
x = L.
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where

W(x, Z) =
sgn Z

2π

∫ ∞

0

cos(kx) exp
[
−1

2
k(Λ + δ2

Ek2)|Z|
]
dk . (3.81c)

This constitutes the flow due to an image system composed of sinks strength δEV0

at z = (2n + 1)H , all integer n.

Inside the flow domain −H < z < H , a scale analysis of (3.79) suggests the
existence of a Hartmann layer width x = O(HE1/2/Λ1/2) = O(δH). However,
the solution (3.81a) exposes this suggestion as over simplistic. Instead a hybrid
E1/3 and Hartmann boundary layer of Hartmann layer width O(δH) is restricted to
stump like regions, aspect ratio Λ−1, stemming from the sinks x = 0, z = ±H
of height H ∓ z = O(HE1/2/Λ3/2) = O(δH/Λ), in which motion is dominated
by w ≈ −δEV0W(x, z ∓ H) (see Figure 3.12b). We may distinguish two limiting
cases. First, when H ∓ z � HE1/2/Λ3/2, the magnetic forces are unimportant [set
Λ = 0 in (3.81c)] and so, close to the sink at z = −H , we are left with the viscous
similarity solution (3.25) modified by a factor −1/2. Second, when HE1/2/Λ3/2 �
H∓z � H , the viscous forces are unimportant. Then, on setting δE = 0, integration
of (3.81c) yields

W(x, z ∓ H) =
1

2π

(Λ/2)(z ∓ H)

x2 + (Λ/2)2(z ∓ H)2
. (3.82)

Furthermore, in the magnetogeostrophic shear layer of width O(ΛH) exterior to the
stump regions, we may neglect viscosity. Thus all W(x, Zn) in the sum (3.81a) may
be approximated by (3.82), so yielding

w = ∂xχ = − δEV0

2π

n=∞∑
n=−∞

(Λ/2)[z − (2n + 1)H]

x2 + (Λ/2)2[z − (2n + 1)H]2
. (3.83)

Indeed with δE = 0, the shear layer equations (3.79a,b) reduce to

2 u = − 2 ∂zχ = −Λ v and − 2 ∂zv = Λ ∂xxχ . (3.84a,b)

This defines an elliptic problem (Λ/2)2∂xxv + ∂zzv = 0. Use of (3.83) shows that
the solution, which meets the boundary conditions v → E1/2V0/Λ, u → −E1/2V0/2
as x/ΔM ↑ ∞ and v → 0, u → 0 as x/ΔM ↓ −∞, is

Λ

2
v = u = − E1/2V0

4

⎡
⎣1 +

1

π

n=∞∑
n=−∞

ΛHx

x2 + (Λ/2)2[z − (2n + 1)H]2

⎤
⎦ . (3.85)
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Similar layers are to be expected on the boundary x = L. The only difference is that
the Hartmann sub–layer covers the entire boundary −H < z < H rather than being
simply stumps as they are for the free shear layers at x = 0.

As Λ increases to unity, the Λ–magnetogeostrophic shear layers at x = 0 and L
expand to fill the entire mainstream domain. Since the velocity is small O(E1/2V0)
[see (3.85)], the moving boundaries z = ±H , 0 < x < L support strong Ekman
layers which carry fluid flux between the sink–source combinations at x = 0 and
L. These in turn drive the magnetogeostrophic flow, which according to (3.71) and
(3.73) is governed by

−2 ∂zχ = Λ (η/B0) ∂xb , −2 ∂zv = Λ ∂xxχ , (3.86a,b)

while b itself satisfies (3.73a). The mainstream equations (3.86a,b) and (3.73a) must
be solved in the region x > 0 subject to the vanishing on the boundaries of b and
the normal velocity (χ = constant), except in the corners, where the sink–source
combinations are located. The magnetic boundary conditions in x < 0 are of course
those that correspond to perfect electrical conductors.

3.3. WAVES

Asymptotic methods can also be very useful in capturing time dependent processes
such as waves. A large variety of waves can propagate in rotating and magnetic
fluids. We shall restrict our attention here to waves propagating in incompressible
fluids (∇ · u = 0).

3.3.1. INERTIAL WAVES

The fundamental wave motion in an inviscid, rotating, non-magnetic system is the
inertial wave. To understand its basic properties, we consider coplanar motion
u(z, t) = (u, v, 0), relative to Cartesian co-ordinates (x, y, z). This flow auto-
matically satisfies the solenoidal condition ∇ ·u = 0. While the equation of motion
reduces to

∂tu + 2Ω × u = −∇(p/ρ) [p = p(z, t)] . (3.87)

The x and y components of motion are simply

∂tu − 2Ωzv = 0 , ∂tv + 2Ωzu = 0 , (3.88a,b)

where Ω = (Ωx, Ωy, Ωz). The equations can be combined to obtain

∂t(u + iv) + 2iΩz(u + iv) = 0 (3.88c)
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with solution

u + iv = (u0 + iv0) exp(−iωt) ω = 2Ωz , (3.89)

where u0 = u(z, 0) and v0 = v(z, 0). The pressure distribution p(z, t) is determined
from the z component of the equation of motion. Fluid particles move in circles
on the planes z = constant with constant velocity and constant angular velocity
−ω = −2Ωz.

From a more specific point of view, we can consider the travelling wave

[u, ζ, p] = Re
{

[ũ, ζ̃, p̃] ei(k·x−ωt)
}

with ζ = ∇ × u , (3.90)

where ũ, ζ̃ are constant complex vectors and p̃ is a complex constant. According to
(3.87), they are related by

− iωũ + 2Ω × ũ = − ikp̃/ρ , with k · ũ = 0 , (3.91a,b)

which in turn yields

p̃ = − 2ρΩ · ζ̃/k2 with ζ̃ = ik × ũ (k = |k|) . (3.91c,d)

Significantly (3.91a,b) imply that ũ · ũ = 0. Compatible with the result (3.89),
the fluid velocity has constant amplitude |u|, where |u|2 = ũ · ũ∗/2 (the star denotes
complex conjugate), and the wave is circularly polarised. We may also deduce from
(3.91), that the fluid velocity u and vorticity ζ satisfy

ωζ = − 2(Ω · k)u , k · u = 0 , (3.92a,b)

in which the frequency is given by

ω = ±ωC = ±2Ω · ek , ek = k/k . (3.93a)

Accordingly the helicity of the wave

u · ζ = ∓ k|u|2 (3.93b)

has the opposite sign to the frequency. It is easy to show that the phase velocity
cp = (ω/k)ek and the group velocity cg = ∇k ω are related by

cg + cp = ±2Ω/k with cp · cg = 0 . (3.93c,d)

Essentially cp, cg and ±2Ω form a right-angled triangle.

From a more general point of view, we may consider modes of given frequency ω
of the form

[u, p] = Re
{
[ũ, p̃](x) e−iωt

}
. (3.94a)
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ũ = ∇ × [∇ × (φ̃ eΩ)] − ∇ × (ψ̃ eΩ) , eΩ = Ω/|Ω| . (3.94b)

This satisfies (3.87) when

2Ω · ∇φ̃ = i ω ψ̃ , 2Ω · ∇ψ̃ = − i ω Δφ̃ , (3.95a,b)

from which we deduce that both ψ̃ and φ̃ satisfy

ω2Δψ̃ − 4(Ω · ∇)2ψ̃ = 0 . (3.95c)

Furthermore, ψ̃ is related to p̃ by

(4Ω2 − ω2)ψ̃ = 2Ωp̃/ρ . (3.96)

Relative to Cartesian coordinates (x, y, z) for which the z axis is parallel to the
rotation vector Ω = (0, 0, Ω), (3.95c) becomes

ω2 ∇2
⊥ψ̃ − (4Ω2 − ω2)∂zzψ̃ = 0 , (3.97a)

where ∇2
⊥ ≡ ∂xx +∂yy as in (3.28b). Moreover since 2Ω ≥ |ω| by (3.93a) this equa-

tion is hyperbolic. So for example y independent solutions have have characteristic
lines

(4Ω2 − ω2)1/2 x ± ω z = constant , (3.97b)

which generate the planes with unit normal

ek =

[(
1 −
( ω

2Ω

)2
)1/2

, 0, ± ω

2Ω

]
. (3.97c)

Since any plane inertial wave (3.90) with wave vector k = (kx, 0, kz) and frequency
ω has this property [see (3.93a)], the characteristic planes coincide with the wave-
fronts.

We note that geostrophy, namely φ = φ(x, y) and ψ = ψ(x, y), is recovered from
(3.95a.b) in the limit ω = 0.

REFLECTION AT A PLANE BOUNDARY

In this section we consider the reflection of a plane wave in a plane boundary with
unit normal n. A more complete description is given by Stewartson (1978) which in
turn is a summary of Phillips (1963). To that end, we adopt Cartesian coordinates
(x, y, z), chosen such that n = (0, 0, 1) and k = (k sin α, 0, k cos α) for some α.
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Accordingly, the most general form of ũ satisfying k · ũ = ũ · ũ = 0, (3.92a) and
(3.93a) is

ũ = ũ±(α, ϕ0) = u0 (cos α, ∓ i, − sin α) exp(iϕ0) , ω = ±2Ω cos α ,
(3.98a,b)

where the amplitude u0 = |u| and phase ϕ0 are arbitrary real constants. On the
boundary z = 0, the velocity (3.90) defined by (3.98a) is

u = u0 Re{(cos α, ∓ i, − sin α) exp[i(k(sin α) x − ωt + ϕ0)]} (3.98c)

[for the case α = 0 cf. (3.89) and (3.93a)]. When α �= 0, the z–component of
velocity is non-zero and then an inertial wave is reflected that must eliminate that
component for all x and t.

If we denote the incident and reflected waves by the superscripts i and r, it then
follows from (3.93a) and (3.98c) that er

k and ei
k must satisfy the relations

|Ω·ei
k| = |Ω·er

k| , n×ki = n×kr , |n× ei
k|ui

0 = |n× er
k|ur

0 ; (3.99a,b,c)

the former two ensure that the incident and reflected wave have the same phase on
the boundary, while the latter is required to ensure that u · n vanishes there. Any
ambiguity in the sign of the k’s is resolved by the requirement that energy propagates
towards (away) from the boundary for the incident (reflected) waves. Thus the group
velocities satisfy

n · ci
g < 0 and n · cr

g > 0 . (3.99d,e)

A simple illustrative example is provided by the special case for which the rotation
vector is normal to the boundary: Ω = (0, 0, Ω) with Ω > 0. Then all the conditions
(3.99a-e) are met by

ũi = ũ−(α, ϕ0) , ũr = ũ+(π − α, π + ϕ0) , ω = −2 Ω cos α (< 0) ,
(3.100a,b,c)

where |α| < π/2. The ensuing motion is

u = 2u0 Re{ (cos α cos Kz, i cos Kz, −i sin α sin Kz) E(x, t)} , (3.100d)

in which

E(x, t) = exp[i(k(sin α) x − ωt + ϕ0)] K = k cos α (> 0) (k > 0) .
(3.100e,f)

When Ω is not parallel to n, the reflection is more complicated. Of particular interest
is the case when the reflected wave is almost normal to the boundary

|n × er
k| � 1 , |n × ei

k| = O(1) . (3.101a,b)
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Then, according to (3.99b,c), the magnitude of the reflected wave is large, while its
wavelength is short:

ur
0 	 ui

0 |kr| 	 |ki| . (3.101c,d)

In the case of bounded systems, the hyperbolic equation (3.97a) must be solved sub-
ject to the impermeable boundary condition n · ũ = 0 on the boundary ∂D of the
fluid. This leads to a badly posed problem. In the case of a spherical cavity, however,
the solution in terms of normal modes with distinct frequencies (eigenvalues) is well

occurrence of a wave vector normal to the boundary is linked to the tangency of a
characteristic line with the boundary. The issue is particularly pertinent to inertial
waves in a shell. Evidently singular behaviour is triggered on the inner sphere at
latitudes ± sin−1(|ω|/2Ω), where they characteristics touch the inner sphere. This
singular behaviour [relatively large amplitude and short length scale (3.101d)], fol-
lows the characteristics to the outer sphere where it is reflected. This reflection
proceeds indefinitely. Indeed it is far from clear that normal modes even exist in the
usual sense as the numerical results of Rieutord & Valdettaro (1997) indicate.

BOUNDARY LAYERS

In view of the difficulties mentioned above it is of some interest to investigate the
role of small viscosity. When the Ekman number is small we may anticipate that
most of the dissipation occurs in boundary layers. So if we consider wave motion
of the form (3.94a) adjacent to a plane boundary, we can resolve the boundary layer
structure by simply adapting the Ekman analysis of Section 3.1.1.

We adopt a local Cartesian coordinate system with n = (0, 0, 1). Within the frame-
work of the boundary layer approximation we assume that the flow just outside the
boundary layer is uniform ũC = (ũC , ṽC , 0), where ũC and ṽC are complex con-
stants. The motion in the boundary layer is governed by

−i ωũ − 2Ωzṽ = −∂x(p̃/ρ) + ν∂zzũ , −i ωũC − 2ΩṽC = −∂x(p̃/ρ) ,
(3.102a,b)

−i ωṽ + 2Ωzũ = −∂y(p̃/ρ) + ν∂zzṽ , −i ωṽC + 2ΩũC = −∂y(p̃/ρ) ,
(3.102c,d)

where Ω = (Ωx, Ωy, Ωz). They can be combined to form the single equation

ν∂zzZ̃
± ∓ i(2Ωz ∓ ω)

(
Z̃± − Z̃±

C

)
= 0 , (3.103)

where Z̃± ≡ ũ ± iṽ and Z̃±
C ≡ ũC ± iṽC . This gives rise to a boundary layer with a

double structure composed of two Ekman spiral solutions

Z̃± = Z̃±
C

{
1 − exp

[
−
(
1 ± i sgn (2n · Ω ∓ ω)

)
z/δ±C

]}
, (3.104a)
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known (see, for example, Greenspan, 1968; Zhang et al., 2001). Nevertheless, the



156 Andrew SOWARD

each characterised by the boundary layer lengths

δ±C =
√

2ν
/
|2n · Ω ∓ ω| . (3.104b)

Evidently, (3.103) and its solution (3.104a,b) reduce to (3.6a,b) and (3.7) with δ±C =
δE in the geostrophic limit ω = 0.

As a simple example, we may consider the boundary layer induced from the reflec-
tion of the inertial wave at the boundary with normal n parallel to Ω described by
(3.100) with Ω = n · Ω > 0. For that model, we have ũC = 2u0 cos α E(x, t),
ṽC = 2iu0 E(x, t) and ω = −2Ω cos α, which gives

Z̃±
C = 2u0(cos α ∓ 1) E(x, t) , δ±C = δE/

√
1 ± cos α . (3.105a,b)

Furthermore, when 2KH = nπ for integer n, the solution (3.100d) provides a wave
guided solution confined between boundaries z = 0 and 2H . This solution is lightly
damped with ω now complex and possessing a small negative imaginary part Im{ω}.
The small damping rate −Im{ω} may be estimated by equating the rate of decay of
the kinetic energy O(−2 Im{ω}Hρu2

0) of the guided inertial wave to the viscous
dissipation O(2δEρν(u0/δE)2) in the Ekman layers on the boundaries z = 0 and
2H . They determine the decay rate

−Im{ω} = O(
√

νΩ/H) = O(E1/2Ω) . (3.106)

Note that [−Im{ω}]−1 = O(E−1/2Ω−1) is the so-called “spin-up” (or “spin-down”)
time for the readjustment of geostrophic flow, which results from the impulsive
change of velocity of horizontal boundaries moving in their own planes. The impor-
tant point is that the spin-up time [−Im{ω}]−1 is a much shorter time than the vis-
cous decay time O((k2ν)−1) = O((kH)−2E−1Ω−1) based on the viscous dissipation
in the main stream. Essentially the main stream viscous dissipation O(2Hρν(ku0)

2)
is smaller than Ekman layer dissipation by the factor O((kH)2E1/2). This factor
places a lower limit L 	 HE1/4 on the inertial wave length scale L = O(k−1)
for which our estimate (3.106) of the decay rate −Im{ω} is applicable [cf. (3.135)
below, where a comparable estimate is made concerning the decay rate of a quasi-
geostrophic flow].

Another interesting feature of the boundary layer structure (3.104) for our particular
case of Ω = Ωn (Ω > 0) is that the boundary layer thickness δ−C (3.105b) tends to ∞
as α → 0. Simultaneously, the amplitude Z̃+

C of the remaining boundary layer struc-
ture tends to zero. Consequently, the viscous boundary layer dissipation associated
with the reflection is small. Nevertheless, the limit α → 0 does illustrate a degen-
eracy that occurs when ω = ±n · Ω. For the more general configuration, in which
Ω is no longer parallel to n, we see that the degeneracy identified occurs whenever
the boundary is tangent to a characteristic, for then one of the boundary layer widths
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δ±C is infinite. So for example in the case of a shell, the boundary layer on the inner
sphere, radius ri, becomes singular at the critical latitudes ± sin−1(|ω|/2Ω), where
the tangent cones exhibit similar singularities to the tangent cylinder for geostrophic
flow. At these critical latitudes the boundary layer thickens to O(riδ

4/5

E ) proportional
to E2/5, as explained at the end of Section 3.1.4. Note, however, that some double
limits are involved here. For not only does the boundary layer thicken but the length
scale of the reflected wave on the characteristic tangent, specifically in the direction
normal to it [see (3.101)], shortens leading to increased viscous dissipation all along
the characteristic and its subsequent reflections. Note, however, that this feature is
absent in our illustrative example (3.100), for which ki = kr = k.

All the issues discussed here pertain to the matter of instabilities in processing

2003).

LOW FREQUENCY MODES

Whereas inertial modes of frequency ω = O(Ω) are pertinent to issues like preces-
sion, low frequency modes with

|ω| � |Ω| (3.107)

may be excited as part of the convective process in the Earth’s core (of outer ra-
dius ro). Accordingly, relative to the cylindrical polar coordinates (s, φ, z) of Sec-
tion 3.1.4, solutions of (3.97a), which vary on the long length scale ro in the z–
direction, must vary on the much shorter length scale roω/ |Ω| in the orthogonal s
and φ–directions.

To investigate the properties of inertial modes in the limit (3.107), we will consider,
for simplicity, a spherical cavity radius ro and ignore the fact that the true Earth’s
core has an inner boundary. For many inertial modes, the inner boundary is an
irrelevance because they lie in the region outside the inner core tangent cylinder
s = ri. Thus, we restrict attention to modes with a short radial s–length scale and
seek WKBJ type solutions, for which the poloidal–toroidal decomposition (3.94b)
has the local form

[φ̃, ψ̃] = [Φ̃, Ψ̃](z) exp[i(∫ k ds + mφ)] (kro 	 1) . (3.108)

Accordingly we approximate the axial z–component of velocity W̃ by

W̃ = −∇2
⊥Φ̃ ≈ a2Φ̃ , where a2 = k2 + m2/s2 , (3.109a,b)
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while the orthogonal components s and φ–components (Ũ , Ṽ ) are dominated by
their toroidal parts and in particular

Ũ ≈ − im

s
Ψ̃ ≈ − 2mΩ

ωsa2

dW̃

dz
, (3.109c)

where use has been made of (3.95a). Hence, the impermeable boundary condition
u · n = 0 on the sphere (s, zo(s)) becomes

m
dW̃

dz
− ωa2

2Ω
zoW̃ = 0 . (3.110)

This provide the boundary condition which must be satisfied by the solutions of
(3.97a), which, correct to lowest order, becomes

d2W̃

dz2
+

ω2a2

4Ω2
W̃ = 0 . (3.111)

The odd and even solutions of (3.111) are

W̃ = W̃ o
0 sin

(ωaz

2Ω

)
and W̃ = W̃ e

0 cos
(ωaz

2Ω

)
. (3.112a,b)

They satisfy the boundary condition (3.110) when

tan
(ωazo

2Ω

)
=

m

azo

and cot
(ωazo

2Ω

)
= − m

azo

(3.112c,d)

respectively. For any given azimuthal wavenumber m and frequency ω, there is a
spectrum of odd and even modes determined by the solutions azo of (3.112c,d). In
fact there is a critical radius sc at which the corresponding value of k vanishes and
there azo = mzo(sc)/sc. Beyond that radius, this formula with (3.109b) shows that
k satisfies

k2 =
m2

s2
c

[(
zo(sc)

zo(s)

)2

−
(sc

s

)2]
for s ≥ sc , (3.113)

while inside (s < sc) k is pure imaginary and the mode is evanescent. Outside
(s > sc) there are two families of solutions determined by (3.113) and distinguished
by wave vectors (k, m/s) and (−k, m/s). The wave fronts for both are initially
radial at s = sc but then twist either prograde or retrograde for s > sc. In fact,
the requirement of evanescence for s < sc leads to a reflection condition at s = sc

that the prograde and retrograde waves are of equal amplitude. Furthermore their
amplitude deceases algebraically with increasing s − sc.

The main interest in these inertial waves is their occurrence at the onset of insta-
bility in a self-gravitating sphere containing a uniform distribution of heat sources.
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There the lowest order odd modes with m = O(E−1/3) are readily identified with a
prograde twist. The role of thermal and viscous dissipation is crucial in that prob-

Nevertheless, in the low Prandtl number limit Pr � 1, the modes do extend almost
out to the outer sphere equatorial boundary s = ro, as in our pure wave theory.

In this context, the lowest order odd modes are of particular interest when |m/azo|
� 1. Then, together with (3.109c), the solution (3.112a,c) determines

Ũ ≈ − W̃ o
0

m

as
, W̃ ≈ W̃ o

0

ωaz

2Ω
, (3.114a,b)

where ω ≈ 2Ωm

a2z2
o

. (3.114c)

These modes are characterised by a z–independent toroidal part; they propagate in
the prograde direction and are referred to as Rossby waves. They form the underly-

The extension of the above ideas to a spherical cavity, of inner radius ri, is beset
with difficulties, except when the critical radius lies outside the inner core tangent
cylinder (i.e. sc > ri). There the low frequency modes again pertain to the onset
of convective instability (Dormy et al., 2004). Nevertheless, even inside the tangent
cylinder (i.e. s < ri) local modes can be investigated in much the same way as

the convective process.

We should also note that low frequency equatorially trapped inertial modes have
been identified at low Prandtl number by Zhang (1995). Nevertheless the double
limit E → 0 and Pr → 0 is difficult to unravel and is yet to be properly resolved

3.3.2. ALFVÉN WAVES

Let us now investigate the role of magnetic fields and begin by outlining the nature of
Alfvén waves. We consider an inviscid, incompressible, non-rotating, perfectly elec-
trically conducting fluid permeated by a uniform magnetic field B = (Bx, By, Bz) at
rest with constant total pressure (sum of fluid and magnetic pressure). This rest state
is perturbed by a slow velocity u, a small magnetic field b and a small perturbation
total pressure pT . They satisfy the linearised equations of motion

ρ∂tu = −∇pT + μ−1(B · ∇)b , ∇ · u = 0 (3.115a)

and magnetic induction

∂tb = (B · ∇)u , ∇ · b = 0 . (3.115b)
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lem and leads to the localisation of the convection pattern (see Jones et al., 2000).

ing idea behind Busse’s annulus model of thermal convection (see Section 3.4.2 and
Busse, 1970).

before (see, e.g., Gubbins & Roberts, 1987) and they may have some relevance to

(see Section 3.4.5).
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Note that together they imply that

ΔpT = 0 . (3.115c)

For waves in an unbounded region, the solution of (3.115c) is necessarily pT = 0.

If we take axes (x, y, z) such that u = (0, u(x, t), 0), b = (0, b(x, t), 0) and assume
that pT = 0, then (3.115a,b) are satisfied when

∂tu = (ρμ)−1Bx∂xb and ∂tb = Bx∂xu (3.116a,b)

respectively. They possess travelling wave solutions

∓ (ρμ)−1/2b = u = f±(x ∓ Vxt) , (3.117a)

where f± are arbitrary functions of their arguments and

V = (ρμ)−1/2(Bx, By, Bz) = (ρμ)−1/2B (3.117b)

is the Alfvén velocity. Here f+(x − Vxt) and f−(x + Vxt) define transverse Alfvén
waves travelling to the right and left respectively.

3.3.3. MHD WAVES IN ROTATING FLUIDS

When the fluid rotates, the equation of motion (3.115a) is replaced by

ρ∂tu + 2ρΩ × u = −∇pT + μ−1(B · ∇)b , ∇ · u = 0 , (3.118a)

while b continues to be determined by the magnetic induction equation (3.115b).
Furthermore, if we introduce the fluid particle displacement η (hopefully not to be
confused with the magnetic diffusivity η), we may express solution b of (3.115b) in
terms of its “frozen” field representation

b = (B · ∇)η with u = ∂tη . (3.118b)

This enables us to construct the single equation

∂ttη + 2Ω × ∂tη = −∇(pT /ρ) + (V · ∇)2η , ∇ · η = 0 . (3.119)

Suppose, as in our preliminary discussion in Section 3.3.1, we choose our axes so
that we are considering waves propagating in the z–direction. Accordingly, the fluid
particle displacement is η = (ηx(z, t), ηy(z, t), 0) and likewise the total pressure
perturbation pT is a function of z and t alone. Now we form the complex displace-
ment

ηx + i ηy = Υ(z, t) exp(−i Ωzt) (3.120)
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as in (3.89), where Υ is a complex function of z and t. The inclusion of the extra
factor exp(−i Ωzt) essentially rotates the frame such that the z–component Ωz of
rotation is removed. By this device the natural extension of (3.88c) is

∂ttΥ + Ω2
zΥ = V 2

z ∂zzΥ . (3.121)

Here the term Ω2
zΥ is essentially the pressure gradient in the original rotating frame,

which there balanced the centrifugal acceleration. Evidently in our new rotating
frame plane polarised waves exist of the form

Υ = Υ0 cos(kz ± ωpt) , where ωp =
√

Ω2
z + (Vzk)2 . (3.122)

Note however that this is a linear combination of two circularly polarised waves

ηx + i ηy = Υ0 exp {i [kz − (Ωz ∓ ωp)t]} , (3.123)

where here k may be both positive and negative. At a particular level z = constant
the particle paths described by (3.123) are circles provided that Vz �= 0 for then
ωp > |Ωz|. Curiously, the above discussion continues to hold for the non-magnetic
case Vz = 0, for which ωp = |Ωz|. Then the choice ∓ωp = Ωz in (3.123) recovers
the inertial wave solution (3.89), while the choice ∓ωp = −Ωz in (3.123) determines
a stationary displacement η, which corresponds to the trivial solution u = 0.

The alternative plane wave solution formulation, which is not dependent on the
choice of coordinate axes, is

[η, u, b, pT ] = Re
{[

η̃, ũ, b̃, p̃T

]
ei(k·x−ωt)

}
. (3.124)

They satisfy (3.115b) and (3.118) when

∓i ωCũ + 2Ω × ũ = − ik p̃T /ρ , k · ũ = 0 (3.125a,b)

with

b̃ = − (k · B)η̃ , η̃ = iω−1ũ , ±ωC = ω − ω2
M/ω , (3.125c,d,e)

where
ωC = 2Ω · ek , ωM = k · V (3.125f,g)

are the inertial (3.93a) and Alfvén wave frequencies respectively. In this way the
structure of the solution has been reduced to that attributed to inertial waves of fre-
quency ±ωC [see (3.91) to (3.93a)], albeit their actual frequency ω is determined by

ω = ± 1
2
ωC + ωp and ± 1

2
ωC − ωp , (3.126a,b)

where
ωp =

√(
1
2
ωC

)2
+ ω2

M , (3.126c)

consistent with (3.123).
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ALFVÉN WAVES: ωC = 0

When the inertial frequency vanishes (ωC = 0), it follows from (3.125f) that Ω
is perpendicular to k and so lies in the plane of the wavefront. That means mo-
tion is independent of the coordinate parallel to the rotation axis and thus satisfies
the Proudman–Taylor condition. In summary therefore motion is geostrophic and
according to (3.125) satisfies

2Ω × ũ = − ik p̃T /ρ k · ũ = 0 , k · Ω = 0 . (3.127a,b,c)

Though geostrophic, the motion that ensues is a pure Alfvén wave of the type
(3.117a) with frequency ω = ±ωM , as the equation (3.121) and result (3.122) with
Ωz = 0 and ωp = |Vzk| illustrate.

An interesting degenerate mode of zero frequency occurs when both ωC = 0 and
ωM = 0. Then according to (3.125f,g) motion is not influenced by either Coriolis or
Lorentz forces and lies in the plane containing both B and Ω, i.e.

u · (B × Ω) = 0 with k ‖ B × Ω . (3.128a,b)

Motion of this type with arbitrary length scale L in the B × Ω–direction is pos-
sible. This type of motion is believed to play an important role in rotating MHD
turbulence. In that case with dissipation (particularly ohmic) included, there is ev-
idence of plate like motion of this type with a small value of L and determined by
the diffusion length scale (Braginsky & Meytlis, 1964; St. Pierre, 1996).

LEHNERT WAVES: ωC �= 0

When ωC �= 0, the both families of waves, with frequencies (3.126a,b), are circularly
polarised exactly as illustrated by (3.123).

For geophysical parameter values, we generally have Alfvén velocities |V| which
are small compared to LΩ, where L = O(k−1) is the length scale of the waves. So,
unless k is almost orthogonal to Ω, we have

|ωM | � |ωC | (3.129a)

and then the two families of waves identified by the roots (3.126a,b) of the dispersion
relation (3.125e) have very different characters. One corresponds to the fast inertial
wave with frequency ω ≈ ±ωC for which the Lorentz force only provides a small
perturbation. The other is the slow hybrid MC–wave (Lehnert, 1954) with frequency

ω = ∓ωMC , where ωMC ≈ ω2
M/|ωC | = O

(
B2/L2μρ|Ω|

)
.

(3.129b,c)
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In this approximation, the inertial term ∂ttη is neglected in the equation of motion
(3.119) leaving the magnetogeostrophic balance

2Ω × ∂tη = −∇(pT /ρ) + (V · ∇)2η , ∇ · η = 0 . (3.130a,b)

For our earlier axis choice with k = (0, 0, k), the slow MC–wave solution expressed
in the form (3.123) is

ηx + i ηy = Υ0 exp
{
i
[
kz + 1

2

(
B2

zk
2/ρμΩz

)
t
]}

. (3.131)

Of course, they are circularly polarised, but curiously the sense of rotation of fluid
particles at given z is opposite to that for the fast inertial oscillations. This is simply
a reflection of the fact that |ωp| is always greater than |ωC |/2, when ωM �= 0.

Note that the slow MC–wave timescale defined by the inverse of (3.129b) is compa-
rable to the magnetic diffusion time L2/η, when the Elsasser number

Λ = B2/μηρ|Ω| (3.132)

[see (3.60c)] is of order unity. Significantly the dimensionless number Λ is inde-
pendent of the length L. These waves are believed to play an important role in the
geodynamo process as the Elsasser number is estimated to be of roughly order unity
in the Earth’s core.

TORSIONAL OSCILLATIONS WITH DISSIPATION

The low frequency Alfvén waves relate to the short period length of day variation for

Thus geostrophic circular cylinders with their generators aligned to the rotation axis
rotate rigidly but independently. They are coupled by the meridional magnetic field
which threads them and permits a cylindrical Alfvén wave to propagate.

In order to appreciate the nature of the mechanism, we adopt the parallel plane
geometry of Section 3.1.3; a more complete description in cylindrical geometry is
given by Gubbins & Roberts (1987). Relative to Cartesian coordinates (x, y, z),
we consider fluid confined between to plane boundaries z = ±H . The system
rotates about the z–axis with angular velocity Ω = (0, 0, Ω) and Ω > 0, while
the electrically conducting fluid is permeated by the uniform magnetic field B =
(B, 0, 0). The idea is that the y–direction is to be identified with the azimuthal
direction in the sphere and so we consider velocity and magnetic field perturbations
u = (0, v(x, t), 0) and b = (0, b(x, t), 0) respectively.

We take into account small viscosity and finite ohmic diffusion. We therefore as-
sume that there are thin Ekman layers of width δE =

√
ν/Ω adjacent to each bound-

ary, in which the Lorentz force is unimportant. Since the applied magnetic field is
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the Earth and are manifest as a geostrophic torsional oscillation (see Section 4.3.4).
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aligned with the boundary, this approximation is reasonable provided that the mag-
netic field is not too large. The solution in the mainstream is the time dependent
extension of (3.31), namely

∂tv + E1/2Ωv = (B/μρ) ∂xb + ν ∂xxv , ∂tb = B ∂xv + η ∂xxb , (3.133a,b)

where E = ν/H2Ω is the Ekman number. The dispersion relation for damped
torsional waves proportional to exp[i(kx − ωt)] is

(
−i ω + E1/2 Ω + νk2

) (
−i ω + ηk2

)
= −V 2k2

(
V 2 = B2/μρ

)
.

(3.134a,b)
Assuming that the damping is not too strong, the decay rate characterising the damp-
ing is

− Im{ω} = 1
2

[
E1/2 Ω + (ν + η)k2

]
. (3.135)

Since ν � η in the Earth’s core, whether the damping of the waves is by Ek-
man suction or Ohmic diffusion in the mainstream depends on whether the hori-
zontal length scale L (= O(k−1)) is much greater or less than (η/ν)1/2E1/4H =
(ηH)1/2/(νΩ)1/4 respectively.

The model may be made more geophysically relevant by placing side walls at x =
±L as we did in Section 3.2.4. On solving (3.134a,b) at given ω, we obtain k ≈
±ω/V and k ≈ ±iV/

√
νη. The former with k real, determines the complex fre-

quency ω (3.135) of our lightly damped wave. The latter indicates that the boundary
layers to be found on the walls x = ±L are Hartmann layers as in Section 3.2.4.

Though we capture important features of the torsional waves by our model, it does
possess degenerate features. They are that the top and bottom boundaries are parallel
to the applied magnetic field B and that the side walls x = ±L are parallel to
the rotation vector Ω. As we explained in Section 3.2.4, neither of these features
are typical in the geophysical situation. Indeed the Earth’s meridional magnetic
field will generally have a component normal to both the inner core boundary r =
ri and the core mantle boundary r = ro. There we expect an Ekman-Hartmann
boundary layer to play a role rather than the Ekman layer advocated in (3.133a,b).
The meridional magnetic field, which permeates the boundaries, may lead to an
important dynamical coupling. For even though the mantle may be a relatively poor
electrical conductor, the weak electric currents that leak into the mantle may produce
forces on it far larger than the viscous stress at the boundary. Nevertheless that is a
complicated and involved matter which is outside the scope of our present analysis
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3.3.4. STRATIFIED ROTATING MHD WAVES

We now briefly discuss the effects of gravity g = −gn, where the unit vector n
points upwards, in a horizontally stratified Boussinesq fluid density ρ0(x), for which
∇ρ0 is parallel to g. The governing equations for the full dissipative system are, as
derived in Chapter 1,

∂tu + 2Ω × u = −∇(pT /ρ) + ϑg + (μρ)−1B · ∇b + νΔu , (3.136a)

∇ · u = 0 , ∇ · b = 0 , (3.136b,c)

∂tb = B · ∇u + ηΔb , (3.136d)

∂tϑ = − ρ0
−1 u · ∇ρ0 + κΔϑ (g × ∇ρ0 = 0) , (3.136e,f)

where, pT denotes the total pressure and ϑ corresponds to the density perturbation
(i.e. ϑ = α Θ, where Θ is the temperature perturbation used in Chapter 1, page 16).

The dispersion relation for waves of the form (3.124) is

Σ − ω2
C

Σ
− ω2

A

ω + iκk2
= 0 , (3.137a)

in which Σ = ω + iνk2 − ω2
M

ω + iηk2
, (3.137b)

where ω2
A = N2 |ek × n|2 and N2 = ρ0

−1 g · ∇ρ0 (3.137c,d)

is the Brunt-Väisälä frequency. Note that the fluid is stably (unstably) stratified
when N2 ≥ 0 (N2 < 0). Here ωA (possibly pure imaginary) is the gravity wave
frequency, while ωC and ωM are the inertial and Alfvén frequencies (3.125f,g).

When all the diffusions are negligible, we may set ν = η = κ = 0 and take advan-
tage of the particle displacement approach (3.118b) and write

ϑ = − ρ0
−1 η · ∇ρ0 (3.138)

for the pertubation buoyancy. Accordingly the equation of motion (3.136a) be-
comes

∂ttη + 2Ω × ∂tη = −∇(pT /ρ) − N2(η · n)n + (V · ∇)2η , ∇ · η = 0 ,
(3.139a,b)

which is the buoyancy driven extension of (3.119). To obtain a simple and infor-
mative picture of the nature of our waves, we choose Cartesian coordinate axes
as follows. The z–axis is parallel to the wave vector k but its direction ez =
(0, 0, 1) is chosen so that ez · n ≥ 0. The y–axis is horizontal and so we write
n = (− sin α, 0, cos α), where α is the tilt angle of the wave front to the horizontal.
The x–axis points in the direction of steepest descent (ascent) on the wave front for
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Figure 3.13 - Elliptically polarised plane waves for N2 > 0 and Ωz > 0. (a)
The geometry of the wave front z = 0. The particle paths and their direction are
indicated for two cases: (b) Slow waves with ηx0 > ηy0 > 0, R > 0; (c) Fast waves
with 0 < ηx0 < ηy0, R < 0.

0 ≤ α ≤ π/2 (−π/2 ≤ α ≤ 0) (see Figure 3.13a). The fluid particle displacement
η = (ηx(z, t), ηy(z, t), 0) lies in the plane of the wave front and, when ω is real,
possesses elliptically polarised travelling wave solutions of the form

ηx = ηx0 cos(kz − ωt) , ηy = ηy0 sin(kz − ωt) , (3.140a)

where the real constants ηx0 and ηy0 measure the lengths of the principal axes of the
elliptical particle paths. Note that according to (3.140a) the sense of rotation of the
particle paths about the ellipse is determined by

R = sgn
(
(η × u) · ez

)
, where η × u = (0, 0, −ωηx0ηy0) (3.140b)

is a constant vector independent of the sign of k. Note, however, that the sense of
rotation is also linked to the helicity u · ∇ × u because the wave (3.140a) satisfies
the relation

ω2 η × u = (u · ∇ × u) cp , (3.140c)

where as in (3.93b) cp = (ω/k)ek is the phase velocity.

The x and y–components of (3.139a,a) are satisfied when

(ω2 − ω2
M − ω2

A) ηx0 = 2Ωzω ηy0 , (3.142a)

(ω2 − ω2
M) ηy0 = 2Ωzω ηx0 , (3.142b)

where ω2
M = (kBz)

2/(ρμ) , ω2
A = N2 sin2 α . (3.142c)

From (3.142a,b), we may deduce that the square of the ellipse aspect ratio is(
ηy0

ηx0

)2

=
ω2 − ω2

M − ω2
A

ω2 − ω2
M

, (3.143a)
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while the dispersion relation for ω is

(ω2 − ω2
M − ω2

A) (ω2 − ω2
M) − ω2

Cω2 = 0
(
ω2

C = 4Ω2
z

)
(3.143b)

consistent with (3.137a-f). The rotational sense R = sgn(−ωηx0ηy0) of the particle
paths determined by (3.142a,b) is

R = sgn
(
Ωz(ω

2
M − ω2)

)
= sgn

(
Ωz(ω

2
M + ω2

A − ω2)
)
. (3.143c)

The four roots ω = ±ωS and ±ωF of (3.143b), where 0 ≤ ωS ≤ ωF , identify slow
ωS and fast ωF waves with opposite rotational senses

RS = −RF = sgn Ωz . (3.144)

Here it is important to appreciate that our wave front plane with normal ez has been
orientated relative to the direction of gravity −gn such that n · ez ≥ 0 and not the
direction (sgn k)ez of the wave vector. So it is in this sense that Ωz = n · eΩ enters
the formula (3.144). As an example, the inertial waves of Section 3.3.1 have the fast
wave rotational sense −sgn Ωz, as illustrated by (3.89).

In the absence of stratification ω2
A = 0 (N2 = 0), both the slow and fast waves

are circularly polarised |ηy0| = |ηx0| and we recover the results of Section 3.3.3.
Furtermore the result (3.123) illustrates the rotational sense rule (3.144), since ωp ≥
|Ωz|.
In the absence of the Coriolis acceleration ωC = 0, plane waves are recovered.
One class of waves is horizontal ηx0 = 0 Alfvén waves ω2 = ω2

M , for which the
buoyancy does no work. The other class is gravity waves modified by the magnetic
field ω2 = ω2

M + ω2
A, which are confined in the direction of steepest descent/ascent

ηy0 = 0. This latter class consists of fast (slow) waves in the case of stable (unstable)
stratification ω2

A > 0 (0 ≤ −ω2
A ≤ ω2

M ). For sufficiently large unstable stratification,
namely −ω2

A > ω2
M , stability is lost (ω2

S < 0).

With the inclusion of both the stratification ω2
A �= 0 and the Coriolis acceleration

ωC �= 0, the particle paths are elliptical. In the case of stable stratification ω2
A > 0,

the slow (fast) waves ω2
S < ω2

M (ω2
F > ω2

M + ω2
A) are elongated in the horizon-

tal (steepest descent/ascent) direction with |ηy0| > |ηx0| (|ηy0| < |ηx0|) (see Fig-
ure 3.13b,c). By contrast, in the case of unstable stratification ω2

A < 0, the slow
(fast) waves ω2

S < ω2
M +ω2

A (ω2
F > ω2

M ) are elongated in the steepest descent/ascent
(horizontal) direction with |ηy0| < |ηx0| (|ηy0| > |ηx0|).
As remarked the limit ωM � |ωC | (3.129a) is geophysically interesting. For that
the fast waves are pertubations of inertial waves with the inertial wave frequency
ωF = ±|ωC |. In the case of the slow waves inertia is negligable and the particle
displacements satisfy

− (ω2
M + ω2

A) ηx0 = 2Ωzω ηy0 , −ω2
M ηy0 = 2Ωzω ηx0 , (3.145a,b)
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in which

ω = ±ωS ≈ ±ωMAC , where ωMAC = |ωM |
√

ω2
M + ω2

A

/
|ωC |
(3.145c)

is the so-called MAC–wave frequency (Braginsky, 1967). Like the slow MC–wave
(3.131) of Section 3.3.3 it exhibits the particle path rotational sense RS = sgn Ωz

(3.144). Furthermore, the principal axis ratio of the MAC–wave ellipse is

|ηy0|
/
|ηx0| = ωMAC/ ωMC , (3.145d,e)

where ωMC = ω2
M/|ωC | is the MC–wave frequency (3.129).

We describe briefly the role of dissipation as it appears in the general formulation
(3.136). In geophysical situations, inertia and viscocity are unimportant. With those
terms neglected, we can make the approximation

Σ = −ω2
M/(ω + iηk2) (3.146)

in (3.137b) and simplifications follow. Since the magnetic diffusion timescale is ar-
guably comparable to the MC–wave timescale, the modification involving (3.146) is
an attractive direction of investigation. Furthermore, the excitation of MAC–waves
with both the magnetic and thermal diffussions included involves a comprehensive
study of convective and resistive instabilities which lies outside the scope of this

3.4. CONVECTION IN ROTATING
SPHERICAL FLUID SHELLS

In the previous section we addressed free waves in a non dissipative system, we will
now address dissipative systems for which an energy source is necessary to maintain
motions. In most natural dynamos, the relevant source is buoyancy and the resulting
motions are then referred to as “convection”.

3.4.1. PHYSICAL MOTIVATIONS

Convection driven by thermal buoyancy in rotating spherical bodies of fluid has long
been recognised as a fundamental process in the understanding of the properties of
planets and stars. Since these objects are rotating in general and since their evolution
is associated with the transport of heat from their interiors convection influenced by

© 2007 by Université Joseph Fourier
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the Coriolis force does indeed play a dominant role in the dynamics of their fluid
parts. In the case of the Earth it is the generation of the geomagnetic field by motions
in the molten outer iron core which has stimulated much interest in the subject of
convection in rotating spheres. But the zones and belts seen on Jupiter are a just as
interesting phenomenon driven by convection in the deep atmosphere of the planet.
Similarly, the differential rotation of the Sun and its magnetic cycle are intimately
connected with the solar convection zone encompassing the outer 30 percent of the
Sun in terms of its radial extent (see Figure 6.1).

Theoretical studies of convection in rotating fluid spheres started about 50 years
ago. The attention was restricted to the linear problem of the onset of convection
and for simplicity axisymmetric motions were assumed. An account of these early
efforts can be found in Chandrasekhar’s famous treatise (1961) and in the papers by
Bisshopp & Niiler (1965) and by Roberts (1965). A little later it became evident
that the preferred forms of convection in the interesting limit of rapid rotation are
not axisymmetric, but highly non–axisymmetric (Roberts, 1968). In this later paper,
however, the incorrect assumption was made that the preferred mode of convection
exhibits a z–component of the velocity field parallel to the axis that is symmetric
with respect to the equatorial plane. The correct mode for the onset of convection
was found by Busse (1970a) who approached the problem on the basis of the rotating
cylindrical annulus model. This model takes advantage of the approximate validity

reduced from three to two spatial dimensions.

3.4.2. CONVECTION IN THE ROTATING
CYLINDRICAL ANNULUS

Convection in the fluid filled gap between two rigidly rotating coaxial cylinders is
receiving increasing attention because it shares many linear and nonlinear dynam-
ical properties with convection in rotating spherical fluid shells, at least as far as
columnar convection is concerned. From the point of view of planetary applications
it seems natural to have gravity pointing inward and to keep the inner cylinder at the
higher temperature T2. However, since the centrifugal force is used as a source of
buoyancy in laboratory experiments with the higher temperature at the outer cylin-
der we shall use this latter configuration as shown in Figure 3.14. Since only the
product of effective gravity and applied temperature gradient is physically relevant
the two cases are equivalent. In experimental realisations of the system ordinary
gravity plays a minimal role when a vertical axis of rotation is used and when the
rate of rotation is sufficiently high such that the centrifugal force exceeds gravity by
at least a factor of two or three. An important ingredient of the geometrical con-
figuration shown in Figure 3.14 are the conical boundaries at top and bottom which
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Figure 3.14 - Sketch of the geometrical configuration of the rotating cylindrical
annulus.

cause a variation in height with distance from the axis of rotation. Without this
variation in height steady two–dimensional convection rolls aligned with the axis
will be realised since they obey the Proudman–Taylor condition. The Coriolis force
is entirely balanced by the pressure gradient in this case and Rayleigh number for
onset of convection in the small gap limit is given by the Rayleigh–Bénard value
for a non–rotating layer. Thin Ekman layers at the no–slip top and bottom bound-
aries exert only a minor influence on the dynamics of convection if the height L of
the annulus is sufficiently large in comparison to the gap size. As soon as the height
changes in the radial direction any flow involving a radial velocity component can no
longer satisfy the geostrophic balance. Instead a weak time dependence is required
and the flow assumes the character of Rossby waves as introduced in Section 3.2.4
on page 159. These waves are well known in the meteorological context where the
variation of the vertical component of rotation with latitude has the same effect as the
variation of height in the annulus of Figure 3.14. The dynamics of Rossby waves
can be visualised most readily if the action of the vorticity acquired by the fluid
columns displaced radially from the middle of the gap is considered. As indicated
in Figure 3.15 columns shifted inward acquire cyclonic vorticity because they are
stretched owing to the increasing height. The opposite sign of vorticity is exhibited
by columns moving outward. Since their moments of inertia are increased they must
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Figure 3.15 - The mechanism of propagation of a Rossby wave visualised in the
equatorial plane of the rotating annulus: Fluid columns originally resting at the mid–
surface acquire anti–cyclonic vorticity relative to the rotating system when they are
displaced outwards towards the shallow region. Cyclonic vorticity is acquired by
the columns displaced inwards. The action of the columnar motion on the neighbor-
ing fluid columns is such that an initial sinusoidal displacement propagates in the
prograde direction.

rotate anti–cyclonically relative to the rotating system in order to conserve angular
momentum. The action of the acquired motion of sinusoidally displaced columns
on their neighbors results in the propagation of a wave as shown in Figure 3.15. The
phase velocity is in the prograde (retrograde) direction when the height decreases
(increases) with distance from the axis.

In the case of convection the dynamics is modified by the presence of thermal buoy-
ancy and the phase velocity is less than that of Rossby waves except in the limit of
vanishing Prandtl number. In the laboratory thermal Rossby waves, as the propagat-
ing convection waves are called, can be realised relatively easily (Busse & Carrigan,
1974). In Figure 3.16 photographs of a combination of two experiments on convec-
tion driven by centrifugal buoyancy in a rotating cylindrical annulus are shown. In
the upper part an annular region of constant height is realised and convection occurs
as a nearly geostrophic flow (except for the thin Ekman layers at the upper and lower
boundaries). Accordingly the Coriolis force is balanced by the pressure gradient and
the Rayleigh number for onset of convection is nearly the same as in the case of a
fluid layer heated from below. In the lower part of the apparatus an annular region of
varying height is realised through conical end boundaries as sketched in Figure 3.14.
In this situation the Rayleigh number for onset of convection is increased such that
in the left photograph the basic state of pure conduction is still stable. Only after a
further increase of the temperature difference across the annular gap does convection
set in the lower annular region as well. A movie would be needed to demonstrate
the wave like propagation of the columns, but is worth noting that the wavelength is
smaller than that of the steady convection in the upper part as is predicted by theory.

The mathematical analysis of thermal Rossby waves is quite simple if the inclination
of the cones with respect to the equatorial plane is introduced as a small perturba-
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Figure 3.16 - Photographs of convection rolls made visible by small flaky particles
which align themselves with the shear of the fluid motion. The cylinder is rotating in
a warm water bath and the inner cylindrical wall is cooled by water flowing through
the axis. The upper annular region has parallel top and bottom boundaries, while
the lower region is bounded by conical boundaries. Since the latter tend to inhibit
convection the basic state of pure conduction is still stable in the bottom of the left
picture, while convection has already developed in the top part of the apparatus. An
increased Rayleigh number is necessary to cause the onset of the thermal Rossby
waves as shown in the right picture.
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tion. Using the gap width D as length scale and D2/ν as timescale where ν is the
kinematic viscosity of the fluid we may assume the velocity field in the form

u = ∇ψ(x, y, t) × k + . . . , (3.147)

where k is the unit vector in the z–direction parallel to the axis of rotation and where
the small gap approximation with x as radial coordinate and y as azimuthal coordi-
nate has been assumed. Only the geostrophic component of u has been denoted
explicitly in expression (3.147). Deviations from geostrophy are induced by the
condition of vanishing normal velocity at the conical boundaries:

uxη0 ± uz = 0 at z = ± L

2D
(3.148)

where the tangent η0 of the angle χ between the cones and the equatorial plane
has been introduced as small parameter. By taking the z–component of the curl
of the equation of motion and averaging it over the height of the annulus we can
incorporate the boundary condition (3.148) into an equation for the z–component of
vorticity, −Δ2ψ:

(∂t + ∂yψ∂x − ∂xψ∂y) Δ2ψ − Δ2
2ψ − η̂ ∂yψ = −∂yΘ (3.149a)

where Δ2 is the two–dimensional Laplacian, Δ2 = ∂2/∂x2 + ∂2/∂y2. Equation
(3.149a) must be considered together with the heat equation for the deviation Θ
from the static temperature distribution of pure conduction:

Pr (∂t + ∂yψ∂x − ∂xψ∂y) Θ + R̂a ∂yψ = Δ2Θ , (3.149b)

where Θ is measured in multiples of (T2 − T1)Pr/R̂a. T1 and T2 are the temper-
atures prescribed at the inner and outer cylindrical boundaries, respectively. We
have used here a non–dimensional form which differs slightly from that of Chap-
ter 1, Section 1.1.3. The Prandtl number (Pr = ν/κ) is unaltered. The strength
of the Coriolis term is not measured here by the inverse of the Ekman number, but
by the dimensionless Coriolis parameter η̂ (not to be confused with the forthcoming
Coriolis number τ ) defined as

η̂ =
4Ωη0D

3

νL
, (3.150)

where Ω denotes, as before, the angular velocity of rotation. The Rayleigh number
here takes a modified form R̂a (where r0 Ω2 replaces gravity)

R̂a =
α(T2 − T1)Ω

2r0D
3

νκ
, (3.151)
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where α is as before the coefficient of thermal expansion and r0 is the mean radius
of the annulus.

Assuming stress–free boundaries at the cylindrical walls,

ψ = ∂xxψ = Θ = 0 at x = ±1
2
, (3.152)

we obtain a completely specified mathematical formulation of the problem of cen-
trifugally driven convection in the cylindrical annulus.

The onset of convection is described by the linearised version of (3.149a) which can
be solved by

ψ = A sin nπ (x + 1
2
) exp {iαy − iωt} , Θ =

−i α R̂a ψ

α2 + (nπ)2 − iω
, (3.153a,b)

with the following relationships for ω and R̂a:

ω =
η̂ α

(1 + Pr)(n2π2 + α2)
, (3.154a)

R̂a = (n2π2 + α2)3α−2 +

(
η̂ Pr

1 + Pr

)2

(n2π2 + α2)−1 . (3.154b)

As expected the dependence of the Rayleigh number on the wavenumber in the
case of Rayleigh–Bénard convection in a non–rotating layer is recovered in the limit
η̂ = 0. The mode corresponding to n = 1 is preferred in this case, of course. This
property continues to hold for finite η̂. But as the limit η̂ → ∞ is approached, the
values of R̂a and ω do not depend on n in first approximation as can be seen from
the following expressions for the critical values in the limit of large η̂:

αc = η̂
1/3
P (1 − 7

12
π2η̂

−2/3
P + . . .) , (3.155a)

R̂ac = η̂
4/3
P (3 + π2η̂

−2/3
P + . . .) , (3.155b)

ωc =
√

2Pr−1η̂
2/3
P (1 − 5

12
π2η̂

−2/3
P + . . .) , (3.155c)

where the definition η̂P = η̂Pr
√

1/2(1 + Pr)−1 has been used.

Expressions (3.155a,b,c) have been derived for n = 1, but they hold for arbitrary n
when π2 is replaced by (nπ)2 . The weak dependence on the radial coordinate of the
problem has two important consequences:

(i) The onset of convection is rather insensitive to the cylindrical boundaries. The
analysis can thus be applied to the case of a sphere where these boundaries are
missing.
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(ii) Modes of different radial dependence correspond to the same critical param-
eters asymptotically. Secondary bifurcations right above threshold become
possible through couplings of these modes.

The latter possibility is indeed realised in the form of the mean flow instability. A
transition to a solution of the form

ψ = A sin(αy − ωt) sinπ(x + 1
2
) + B sin(αy − ωt + ϕ) sin 2π(x + 1

2
) (3.156)

occurs as the Rayleigh number is increased beyond the critical value unless the
Prandtl number is rather small (Or & Busse, 1987). A characteristic property of so-
lution (3.156) is the strong mean zonal shear which it generates through its Reynolds
stress, uxuy ∝ AB sin π(x+1/2) sin ϕ, where the bar indicates the average over the
y–coordinate. Both signs of the shear are equally possible since the sign of B is ar-
bitrary. The mean flow instability corresponds to a tilt of the convection columns as
indicated in Figure 3.17. When the columns are slightly tilted in the prograde sense
towards the outside prograde momentum is carried outward and retrograde momen-
tum is transported inwards leading to a differential rotation in which the outer fluid
rotates faster than the inner one. An equilibrium is reached through viscous stresses
which tend to oppose the differential rotation. The reverse situation occurs when
the columns are tilted the other way as shown in Figure 3.17(b). The instability oc-
curs because the differential rotation tends to increase the initial tilt and a feedback
process is thus initiated. The mean flow instability of convection rolls is also pos-
sible in a non–rotating Rayleigh–Bénard layer. But there it is usually preceded by
three–dimensional instabilities.

There is another way in which a differential rotation in the annulus can be generated.
When curved cones instead of straight cones are used as indicated in Figure 3.18
solutions of the form (3.152) with separating x– and y–dependences are no longer
possible. The term η̂ ∂yψ in (3.149a) must now be replaced by η̂ (1+ εx) ∂yψ where
positive ε refers to the convex case of Figure 3.18(a) while a negative ε corresponds
to the concave cones of Figure 3.18(b). The columns are tilted because the thermal
Rossby wave has the tendency to propagate faster on the outside than on the inside
when ε is positive and vice versa. A differential rotation prograde on the outside and
retrograde on the inside must thus be expected for ε > 0 as shown in Figure 3.18(a)
while the opposite results is obtained for ε < 0. The experiment of Busse & Hood
(1982) has demonstrated this effect.

There are numerous other interesting features of convection in the cylindrical annu-
lus such as vacillations and relaxation oscillations which appear at higher Rayleigh
numbers and which can be related to analogous phenomena of convection in rotat-
ing spheres.

The influence of non–axisymmetric
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(a) (b)

� �

Figure 3.17 - The mean flow instability leading to either outward (a) or inward (b)
transport of prograde angular momentum.

� �

(a) (b)

Figure 3.18 - Influence of curved conical boundaries. In the convex case (a) the
columns tend to spiral outward in the prograde direction. They thus create a different
rotation with higher angular velocity on the outside than on the inside. The opposite
situation is found in the concave case (b).
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modulations of the boundaries can also easily be investigated in the annulus model
as shown by Bell & Soward (1996), Herrmann & Busse (1997) and Westerburg
& Busse (2003). Besides the narrow gap limit the finite gap case of the rotating
cylindrical annulus system is also of interest. The discrete manifold of realizable
wavenumbers gives rise to resonances and changes in the character of secondary

3.4.3. MATHEMATICAL FORMULATION OF THE PROBLEM OF
CONVECTION IN ROTATING SPHERICAL SHELLS

The presence of the centrifugal force in rotating planets and stars usually causes
some deviations from spherical symmetry. The surfaces of constant potential be-
come spheroidal and a basic state of vanishing motion relative to a rotating frame
of reference may not exist since surfaces of constant density do not coincide with
surfaces of constant potential in general. As a result of this baroclinicity a differ-

are usually much smaller than those introduced by convection and it is thus a good
approximation to neglect the effects of the centrifugal force and to assume that there
exists a basic static solution with spherically symmetric distributions of gravity and
temperature.

For the theoretical description of thermal convection in rotating spheres usually the
case of a gravity varying linearly with radius, g = −g̃0 d r, is assumed where r is
the position vector with respect to the center of the sphere r = r er , which is made
dimensionless with the thickness d of the shell.7 We assume that a static state exists
with the temperature distribution

TS = T0 − β̃ d2r2/2 + ΔT η̃ r−1(1 − η̃)−2 , (3.157)

where η̃ denotes the ratio of inner to outer radius of the shell and β̃ is proportional
to a uniform density of heat sources in the sphere. In addition an applied tempera-
ture difference is admitted such that ΔT is the temperature difference between the
boundaries in the special case β̃ = 0. Of course, in geophysical and astrophysical
applications only the super–adiabatic part of the temperature field must be identified
with the temperature distribution given above.

In addition to d (the thickness of the shell), the time d2/ν and the temperature
ν2/g̃0αd4 are used here as scales for the dimensionless description of the problem.
We use here the Boussinesq approximation introduced in Chapter 1, Section 1.1.3.

7 Note that g̃0 does not have the dimension of an acceleration, g̃0 d does.
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ential rotation must be expected (see, for example, Busse, 1982). But these effects
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We recall the basic equations of motion and the heat equation for the deviation Θ
from the static temperature distribution:

∂tu + (u · ∇)u + τk × u = −∇π + Θr + Δu , ∇ · u = 0 , (3.158a,b)

Pr (∂tΘ + u · ∇Θ) =
[
Rai + Rae η̃ r−3 (1 − η̃)−2

]
r · u + ΔΘ . (3.158c)

For convenience, the strength of the Coriolis term is here measured by the Coriolis
number

τ ≡ E−1 =
2Ωd2

ν
. (3.159)

The Rayleigh numbers Rai and Rae, follow from Section 1.1.3 (but keeping in mind
that g̃0 d has here the dimension of an acceleration)

Rai =
αg̃0β̃d6

νκ
, Rae =

αg̃0ΔTd4

νκ
. (3.160a,b)

Since the velocity field u is solenoidal the general representation in terms of poloidal
and toroidal components, as introduced Section 1.3.4, can be used:

u = ∇ × (∇up × r) + ∇ut × r ,

(see also Appendix B). By multiplying the (curl)2 and the curl of equation (3.158a)
by r we obtain two equations for up and ut:

[(Δ − ∂t)L2 + τ∂φ] Δup + τQ3ut − L2Θ = −r · ∇ × [∇ × (u · ∇u)] (3.161a)

[(Δ − ∂t)L2 + τ∂φ] ut − τQ3up = r · ∇ × (u · ∇u), (3.161b)

where ∂φ denotes the partial derivatives with respect to the angle φ of a spherical sys-
tem of coordinates r, θ, φ and where the operator L2 was defined in (1.80) page 27,
we recall

L2 ≡ −r2Δ + ∂r(r
2∂r) , (3.162a)

and the operator Q3 is defined by

Q3 ≡ r cos θ Δ − (L2 + r∂r)(cos θ∂r − r−1 sin θ∂θ) . (3.162b)

Stress-free boundaries with fixed temperatures are most often assumed:

up = ∂rrup = ∂r(ut/r) = Θ = 0 , (3.163)
at r = ri ≡ η̃/(1 − η̃) and r = ro = (1 − η̃)−1.

The numerical integration of equations (3.161a,b) together with boundary conditions
(3.163) in the general nonlinear case proceeds with the pseudo–spectral method as
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described by Tilgner & Busse (1997) which is based on an expansion of all depen-
dent variables in spherical harmonics for the θ, φ–dependences, i.e.

up =
∑
�,m

V m
� (r, t)Pm

� (cos θ) exp{imφ} (3.164)

and analogous expressions for the other variables, ut and Θ. Pm
� denotes the asso-

ciated Legendre functions. For the r–dependence expansions in Chebychev polyno-
mials are used. For further details see also Busse et al. (1998). For the computations
to be reported in Sections 3.4.5 and 3.4.6 a minimum of 33 collocation points in
the radial direction and spherical harmonics up to the order 64 have been used. But
in many cases the resolution was increased to 49 collocation points and spherical
harmonics up to the order 96 or 128.

3.4.4. THE ONSET OF CONVECTION
IN ROTATING SPHERICAL SHELLS

The main difficulty in analyzing convection in rotating spherical shells arises from
the fact that the role of the Coriolis force varies with the angle between gravity
and the vector Ω of angular velocity. The geometrical configuration of the polar
regions of the shell thus resembles that of a Rayleigh–Bénard layer rotating about
a vertical axis while in the equatorial region the model of the rotating cylindrical
annulus can be applied. Only at low rotation rates does convection set in in a global
fashion and an axisymmetric mode can become preferred in this case (Geiger &
Busse, 1981). At higher rotation rates the onset of convection does indeed occur
in the form of the columnar modes as predicted on the basis of the annulus model
of Section 3.4.2. A visualisation of the convection motion in the form of thermal
Rossby waves travelling in the prograde direction is shown in Figure 3.19.

A rough idea of the dependence of the critical Rayleigh number Raic for the onset
of convection on the parameters of the problem in the case Rae = 0 can be gained
from the application of expressions (3.155a,b,c) of the annulus model:

Raic = 3

(
τPr

1 + Pr

)4/3

(tan θm)8/3 r−1/3
m 2−2/3 , (3.165a)

mc =

(
τPr

1 + Pr

)1/3

(rm tan θm)2/3 2−1/6 , (3.165b)

ωc =

(
τ 2

(1 + Pr)2Pr

)1/3

2−5/6

(
tan2 θm

rm

)2/3

, (3.165c)

where rm refers to the mean radius of the fluid shell, rm = (ri +ro)/2, and θm to the
corresponding co–latitude, θm = arcsin[rm (1 − η̃)]. The azimuthal wavenumber
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Figure 3.19 - Centrifugally driven convection in a rotating fluid between an inner
cooled and an outer heated spherical boundary. The motions are visualised through
nearly neutrally buoyant thin platelets which align themselves with the shear. The
photograph shows the onset of thermal Rossby waves in the form of convection

of the preferred mode is denoted by mc and the corresponding angular velocity of
the drift of the convection columns in the prograde direction is given by ωc/mc. In
Figure 3.20 the expressions (3.165a,c) are compared with accurate numerical values
in the case Rae = 0 which indicate that the general trend is well represented by
expressions (3.165a,c). The same property holds for mc. In the case Rai = 0 the
agreement with expressions (3.165a,c) is not quite as good since the onset of convec-
tion is more concentrated towards the tangent cylinder touching the inner boundary
at its equator because of the higher temperature gradient in that region. Since we
shall continue to restrict the attention to the case Rae = 0, unless indicated other-
wise, we shall drop the subscript i of Rai.
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Figure 3.20 - Critical Rayleigh number Raic (thick lines) and frequency ωc (right
ordinate, thick dashed lines) as a function of the Prandtl number Pr in the case
η̃ = 0.4 for the Coriolis numbers τ = 5 × 103, 104, 1.5 × 104 and 105 (from
bottom to top). The thin solid and dotted lines correspond to expression (3.165a)
and (3.165c).

For the rigorous analysis of the onset problem in the limit of rapid rotation the de-
pendence of the solution on the distance s from the axis must be considered which
has been neglected in the application of the annulus model. It turns out that a fi-
nite difference exists between the results of the local analysis and the exact global
analysis as was pointed out already by Soward (1977). Using a WKBJ approach
with the double turning point method of Soward & Jones (1983b), Yano (1992) has
analyzed the asymptotic problem in a refined version of the rotating cylindrical an-
nulus model. He assumes a finite gap and the same dependence on s of the small
inclination of the convex conical end surfaces as in the case of the sphere. The com-
ponent of gravity parallel to the axis of rotation is still neglected. These assumptions
have been dropped by Jones et al. (2000), who attacked the full spherical problem.
They find that their results agree surprisingly well with those of Yano (1992). The
asymptotic analysis of Jones et al. (2000) has recently been extended to the case
of spherical shells with varying radius ratio by Dormy et al. (2004). These authors
have also considered the case Rae �= 0, Rai = 0 and have taken into account the
effect of no–slip boundaries.

The analytical findings have been confirmed through numerous numerical studies
(Zhang & Busse, 1987; Zhang, 1991, 1992a; Ardes et al., 1997; Sun et al., 1993)
of which we show Figure 3.21 as an example. This figure emphasises the difference
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Figure 3.21 - Equatorial streamlines, r∂up/∂ϕ = const., of convection columns in
the cases Pr = 105, τ = 105 and Ra = 3 × 106 (upper half) and Pr = 1, τ = 104

and Ra = 2 × 105 (lower half).

between the strongly spiralling nature of the convection columns at Prandtl numbers
of the order unity or less and the more radially oriented columns at higher Prandtl
numbers. This property is a result of the strong decrease of the frequency ω with
increasing Pr.

The interest in convection in rotating spherical shells has motivated a number of
laboratory investigations of the problem. The experiment of Hart et al. (1986) in
which a spherically symmetric electric field acting on a dielectric insulating liquid
is used to simulate gravity was carried out in space in order to avoid the interference
from laboratory gravity. Less sophisticated experiments (Busse & Carrigan, 1976;
Carrigan & Busse, 1983; Cardin & Olson, 1994; Cordero & Busse, 1992; Sumita
& Olson, 2000) have used the centrifugal force with a cooled inner and a heated
outer sphere to simulate the onset as well as the finite amplitude properties of con-
vection. The main handicap of these experiments is the zonal flow generated as a
thermal wind and the associated meridional circulation in the basic axisymmetric
state (Cordero & Busse, 1992). But this handicap can be minimised through the use
of high rotation rates and the observations correspond quite well to the theoretical
expectations as shown by the example of Figure 3.19.

© 2007 by Université Joseph Fourier



3.4 – CONVECTION IN ROTATING SPHERICAL FLUID SHELLS 183

Figure 3.22 - The critical Rayleigh number Rac (solid lines) for the onset of the
inertial convection as a function of τ Pr for various wavenumbers m. The dotted
lines correspond to the analytical expressions derived in Busse & Simitev (2004).
For each m there are two modes corresponding to the two signs of the square root
in expression (3.167b). The retrograde mode corresponding to the positive sign is
preferred at lower values of τPr. But it turns up before the prograde mode which
thus is preferred for larger values of τPr.

3.4.5. ONSET OF INERTIAL CONVECTION
AT LOW PRANDTL NUMBERS

Onset of instability in the form of inertial convection is well known from the case
of a plane horizontal layer heated from below and rotating about a vertical axis. As
has been discussed by Chandrasekhar (1961) convection in the form of modified
inertial waves represents the preferred mode at the onset of instability for Prandtl
numbers of the order 0.6 or less for sufficiently high values of the Coriolis num-
ber τ . A similar situation is found for convection in rotating spherical shells where
Zhang & Busse (1987) identified equatorially attached modes of convection as mod-
ified inertial waves. This connection has motivated Zhang (1994, 1995) to develop a
perturbation approach for analytical description of the equatorially attached convec-
tion. Recently this approach has been extended and simplified by Busse & Simitev
(2004). Here we shall just present a short introduction to the subject.
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It is obvious from (3.161a,b) even in their linearised versions that solutions for which
the r– and θ–dependences separate are not admissible in general. Nevertheless for
some parameter regimes simple, physically realistic solutions of the linearised ver-
sion of (3.161a,b) together with conditions (3.163) can be obtained through the sep-
aration ansatz

up = Pm
m (cos θ) exp{imϕ − iωt} f(r) , (3.166a)

ut = Pm
m+1(cos θ) exp{imϕ − iωt} g(r) , (3.166b)

Θ = Pm
m (cos θ) exp{imϕ − iωt}h(r) . (3.166c)

Solutions of this form satisfy (3.161a,b) after the right hand sides have been dropped
when the term proportional to Pm

m+2 in the expression for Q3ut can be neglected.
This term vanishes exactly in the limit of small Pr and high τ when the convection
assumes the form of an inertial wave with the property

f(r) =

(
r

ro

)m

−
(

r

ro

)m+2

, (3.167a)

g(r) =
2im(m + 2)(r/r0)

m+1

(2m + 1) [ω(m2 + 3m + 2) − m] ro

, (3.167b)

ω =
−τ

m + 2

(
1 ±

[
1 + m(m + 2)(2m + 3)−1

]1/2
)

. (3.167c)

Since this solution does not satisfy all the boundary conditions (3.163), weak Ekman
layers must be added and finite critical Rayleigh numbers for onset have thus been
obtained (Zhang, 1994). Results for the Rayleigh number for different values of
the azimuthal wavenumber m are shown in figure 3.22. According to these results
the mode with m = 1 is always preferred in the case η̃ = 0 if τPr is sufficiently
low (Busse & Simitev, 2004). As τPr increases a transition occurs to the mode
propagating in the prograde direction. Besides the equatorially wall attached mode,
convection can be described approximately in the form (3.166) for arbitrary Prandtl
numbers if τ is less than 103

is approached (Busse, 1970b,1973).

3.4.6. EVOLUTION OF CONVECTION COLUMNS
AT MODERATE PRANDTL NUMBERS

In general the onset of convection in rotating fluid spheres occurs supercritically.
As long as the convection assumes the form of shape preserving travelling thermal
Rossby waves as described by linear theory, its azimuthally averaged properties are
time independent. In fact, as seen from a frame of reference drifting together with
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Figure 3.23 - Time periodic vacillations of convection at Ra = 2.8 × 105 (left) and
Ra = 3 × 105 (right) for τ = 104, Pr = 1 The streamlines, r ∂up/∂ϕ = const. are
shown in one quarter of the equatorial plane. The four quarters are equidistant in
time with Δt = 0.015 (Δt = 0.024) in the left (right) case in the clockwise sense
such that approximately a full period is covered by the circles.

the convection columns the entire pattern is steady. A differential rotation is gen-
erated through the action of the Reynolds stress as explained in Section 3.4.2. The
latter is caused by the spiralling cross section of the columns which persists as a
dominant feature at moderate Prandtl numbers far into the turbulent regime. The
plots of the streamlines r ∂up/∂φ = const. in the equatorial plane shown in any of
the quarter circles of Figure 3.23 give a good impression of the spiralling nature of
the columns.

A true time dependence of convection develops in the form of vacillations after a
subsequent bifurcation. First the transition to amplitude vacillations occurs in which
case just the amplitude of convection varies periodically in time as exhibited in the
left plot of Figure 3.23. At a somewhat higher Rayleigh number shape vacillations
become noticeable which are characterised by periodic changes in the structure of
the columns as shown in the right plot of Figure 3.23. The outer part of the columns
is stretched out, breaks off and decays. The tendency towards breakup is caused
by the fact that the local frequency of propagation varies with distance from the
axis according to expression (3.165c) after θm has been replaced by the local co–
latitude θ.

The two types of vacillations also differ significantly in their frequencies of oscil-
lation. This is evident from the time records of the energy densities of convection
which have been plotted in Figure 3.24. This figure gives an overview of the evo-
lution of time dependence in the interval 2.8 × 105 ≤ Ra ≤ 106. The various
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Figure 3.24 - Time series of energy densities Em
t (thick solid lines), Ef

t (thin solid
lines) and Nusselt number (dotted lines, right ordinate) are plotted for Pr = 1,
τ = 104, and Ra = 2.8 × 105, 3 × 105, 3.5 × 105, 7 × 105 and 12 × 105 (from top
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p and Ef
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p is several orders of magnitude
smaller than the other energies and Ef

p always approaches closely 0.4 × Ef
t .
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Figure 3.25 - Modulated shape vacillations of convection for Ra = 2.9 × 105,
τ = 104, Pr = 1. The plots show streamlines, r ∂up/∂φ = const., in the equatorial
plane and are equidistant in time with Δt = 0.04 so that approximately a full period
is covered.

Nu –1

Ra-Rac

105

10.0104

103

102

104

101

10

E

105 106

1.0

0.1

0.0

Figure 3.26 - Energy densities Em
t (solid line), Em

p (long dash – short dash line, mul-
tiplied by the factor 100), Ef

t (dashed line), Ef
p (thick dashed line) and the Nusselt

number Nu (dash–dotted line, right ordinate) are plotted as function of Ra − Rac

in the case τ = 104, Pr = 1. Rac = 1.9 × 105 has been used corresponding to
mc = 10.

components of the energy densities are defined by

Em
p = 1

2
〈| ∇ × (∇up × r) |2〉, Em

t = 1
2
〈| ∇ut × r |2〉 , (3.168a,b)

Ef
p = 1

2
〈| ∇ × (∇ǔp × r) |2〉, Ef

t = 1
2
〈| ∇ǔt × r |2〉 , (3.168c,d)

where up refers to the azimuthally averaged component of up and ǔp is given by
ǔp = up − up.

With a further increase of the Rayleigh number spatial modulations of the shape
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Figure 3.27 - Localised convection for Ra = 7×105, τ = 1.5×104, Pr = 0.5 . The
streamlines, r ∂up/∂ϕ = const. (first row) and the isotherms, Θ = const. (second
row), are shown in the equatorial plane for equidistant times (from left to right) with
Δt = 0.03.

vacillations occur as shown in Figure 3.25. These modulations often correspond
to a doubling of the azimuthal period but soon contributions with the azimuthal
wavenumber m = 1 arise as shown in Figure 3.25. The pattern in this particular case
is still periodic if appropriately shifted in azimuth. But as further modulations enter
convection becomes quasiperiodic and with increasing Ra a chaotic state is reached.
We refer to Simitev & Busse (2003a) which includes some movies to demonstrate
the time dependence of convection. Figure 3.24 also demonstrates the diminishing
fraction of the total kinetic energy that is associated with the poloidal component
of motion which carries the convective heat transport. The differential rotation in
particular increases much faster with Ra than the amplitude of convection since the
Reynolds stress is proportional to the square of the latter. While this is already
evident from the sequence of plots in Figure 3.24 it is even more obvious from
Figure 3.26. Here it can also be seen that the onset of vacillations and aperiodic time
dependence tends to increase the heat transport as indicated by the Nusselt number
in contrast to the situation in a planar convection layer with the same Prandtl number
(Clever & Busse, 1987). In the latter case the mismatch between the structure of the
convection flow and the configuration of the boundary is absent which inhibits the
heat transport in rotating spherical fluid shells. The time varying shift in the radial
position of the convection columns thus promotes the heat transport. In Figure 3.26
and elsewhere in the paper the Nusselt number, Nu, is defined as the ratio of the
average heat transport at the outer boundary divided by the conductive heat transport
in the absence of convection.
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Figure 3.28 - Relaxation oscillation of turbulent convection in the case Ra = 106,
τ = 1.5 × 104, Pr = 0.5. Energy densities Em

t (solid line), Ef
t (dotted line), Ef

p

(thin solid line) and the Nusselt number (long dashed line, right ordinate) are shown
as functions of time t.

Figure 3.29 - Sequence of plots starting at t = 0.12015 and equidistant in time
(Δt = 0.016) for the same case as in Figure 3.28. Lines of constant uϕ and mean
temperature perturbation, Θ = const. in the meridional plane, are shown in the left
and right halves, respectively, of the first row. The second row shows streamlines,
r ∂up/∂ϕ = const., in the equatorial plane.
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Surprisingly the spatio–temporal randomness of convection columns does not just
increase at larger values of Ra, but instead new coherent structures evolve (Grote &
Busse, 2001). First there is localised convection as shown in Figure 3.27. The dif-
ferential rotation has become so strong that its shearing action inhibits convection in
most parts of the spherical fluid shell as is evident from the figure. Only in a certain
region of longitude is convection strong enough to overcome the shearing action of
differential rotation. In the “quiet” zone the basic temperature profile recovers to-
wards the purely conducting state and thus provides the buoyancy in the interior of
the shell which sustains the localised convection as it is recirculated into the “active”
zone by the differential rotation.

After a further amplification of the differential rotation with increasing Ra the local
intensification of convection no longer suffices to overcome the shearing action of
the zonal flow. Instead of a spatial separation between “active” and “quiet” zones the
system chooses a separation in time which manifests itself in the relaxation oscilla-
tions seen in the lowermost plot of Figure 3.24. The fluctuating component of mo-
tion is still rather turbulent in the case of the relaxation oscillation as demonstrated
in Figures 3.28 and 3.29. When the differential rotation has decayed sufficiently in
the near absence of Reynolds stresses generated by convection, a sudden burst of
convection activity occurs leading to a sharp peak in the heat transport. But since
the Reynolds stress grows just as suddenly as the kinetic energy of convection, the
growth of the differential rotation occurs with only a slight delay. The shearing off
of the convection columns then leads to their decay almost as quickly as they had set
in. The relaxation oscillations occur over a wide region in the parameter space for
high Rayleigh and Coriolis numbers and for Prandtl numbers of the order unity or
less. Since it is mainly determined by the viscous decay of the differential rotation,
the period of the relaxation oscillation does not vary much with these parameters.
For the case of η̃ = 0.4 which has been used for almost all numerical simulations
a period of about 0.1 is usually found. The sequence of bifurcations presented here
can also be reproduced using a simple quasi–geostrophic model (inspired by the
annulus model of Section 3.4.2). It is then found that these bifurcations occure in-
creasingly close to the onset as the Coriolis number is increased (Morin & Dormy,
2004).

3.4.7. FINITE AMPLITUDE CONVECTION
AT HIGHER PRANDTL NUMBERS

The transitions from drifting convection columns to vacillating convection and mod-
ulated vacillating convection do not change much as as the Prandtl number tends to
high values (Zhang, 1992b). But as Pr increases the influence of the differential
rotation which dominates the evolution of the convection columns for Prandtl num-
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Figure 3.30 - Kinetic energy densities (a) Em
p , (b) Ef

p , (c) Em
t and (d) Ef

t all mul-
tiplied by Pr2 as a function of the Prandtl number Pr in the case τ = 5 × 103. The
values of the Rayleigh number R = 5 × 105, 6 × 105, 8 × 105, 106 are denoted by
empty circles and squares and full circles and squares, respectively.

bers of the order unity and below diminishes rapidly. The feedback process exhib-
ited most clearly by the mean flow instability discussed in Section 3.4.2 ceases to
operate at Prandtl numbers of the order 10. Above this value of Pr the properties
of convection become nearly independent of Pr when the thermal timescale instead
of the viscous one is used. This property which is familiar from Rayleigh–Bénard
convection in plane layers heated from below holds rather generally in convection
systems. For this reason we have plotted in Figure 3.30 energy densities as defined
by expressions (3.168a,b), but multiplied by the factor Pr2 in order to demonstrate
the tendency towards independence of Pr. It should be noted that most of values
used in this figure have been obtained from dynamo computations. But the action of
the Lorentz force is rather weak and hardly affects the Prandtl number dependence
of convection. Only the lower left plot for the energy densities of the differential ro-
tation shows the expected strong decay with increasing Pr. These energy densities
do not decay to zero for Pr → 0, however. The thermal wind relationship obtained
from the azimuthal average of the φ–component of the curl of (3.158a)

τk · ∇uφ = ∂θΘ (3.169)

continues to require a finite field uφ in the limit of high Pr. The right hand side is
finite because the azimuthally averaged temperature field Θ deviates strongly from
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Figure 3.31 - Convection in rotating spherical fluid shells in the cases τ = 104,
Ra = 4× 105, Pr = 1 (left column) and τ = 5× 103, Ra = 8× 105, Pr = 20 (right
column). Lines of constant mean azimuthal velocity uϕ are shown in the left halves
of the upper circles and isotherms of Θ are shown in the right halves. The plots
of the middle row show streamlines, r ∂up/∂ϕ = const., in the equatorial plane.
The lowermost plots indicate lines of constant ur in the middle spherical surface,
r = ri + 0.5.
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Figure 3.32 - Streamlines r ∂up/∂φ = const. in the equatorial plane for the case
Pr = 0.025, τ = 105 with Ra = 3.2 × 105, 3.4 × 105, 4 × 105 (from left to right).

spherical symmetry as long as the influence of rotation is significant.

The typical differences between convection at Prandtl numbers of the order unity
and higher values are exhibited in Figure 3.31 where typical results obtained for
Pr = 1 and Pr = 20 are compared at similar values of Ra and τ . The approximate
validity of the thermal wind relationship (3.169) can be noticed from a comparison
of the plots of uφ and of Θ in the case Pr = 20. The convection columns retain their
alignment with the axis of rotation with increasing Pr, but the spiralling nature of
their radial orientation disappears.

3.4.8. FINITE AMPLITUDE INERTIAL CONVECTION

For an analysis of nonlinear properties of equatorially attached convection we focus
on the case Pr = 0.025 with τ = 105. The critical Rayleigh number for this case
is Rac = 28300 corresponding to m = 10. As Ra is increased beyond the critical
value other values of m from 7 to 12 can be realised, but m = 10 and lower values
are usually preferred. An asymptotic perfectly periodic solution with m = 10 or
m = 9 can be found only for Rayleigh numbers close to the critical value when
computations are started from arbitrary initial conditions. On the other hand, per-
fect periodic patterns appear to be stable with respect to small disturbances over a
more extended regime of supercritical Rayleigh numbers. Distinct transitions like
the transition to amplitude vacillations and to structure vacillations do not seem to
exist for equatorially attached convection. Instead modulated patterns are typically
already observed when Ra exceeds the critical value by 10% as can be seen in the
plots of Figure 3.32. These modulations are basically caused by the superposition
of several modes with neighboring values of the azimuthal wavenumber m which
appear to propagate nearly independently. For example, the period of 1.68 × 10−2

visible in the energy densities shown in Figure 3.33 in the case Ra = 3.2 × 105
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Figure 3.34 - Streamlines r ∂up/∂φ = const. in the equatorial plane for the case
Pr = 0.025, τ = 105 with Ra = 6 × 105, 8 × 105, 106 (from left to right).

is just about half the difference of 3.34 × 10−2 between the periods of the modes
m = 8 and m = 9 according the inertial wave dispersion relation (3.167b) for pro-
grade modes. This property must be expected if a small component with m = 8
participates in the pattern shown in Figure 3.32 which is dominated by the (m = 9)–
component. The time series of energy densities shown in Figure 3.33 indicate that
usually more than two modes contribute to the dynamics of the pattern with the ex-
ception of the case just discussed since the time dependence is not periodic as in the
case when only two modes interact. The computations of the time series require a
high spatial resolution together with a small time step. The time spans indicated in
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Figure 3.33 are sufficient for reaching a statistically steady state of the fluctuating
components of motion since these equilibrate on the fast thermal timescale of the
order Pr−1. Only close to Rac the adjustment process takes longer as can be seen in
the case Ra = 3.1×105 where a (m = 10)–pattern approaches its equilibrium state.
The pattern corresponding to the other cases of Figure 3.33 are shown in Figures

m
t relaxes on the viscous

timescale and therefore takes a long time to reach its asymptotic regime in the ex-
amples shown in Figure 3.33. But the differential rotation is quite weak such that it
has a negligible effect on the other components of motion except in the case of the
highest Rayleigh number of Figure 3.33. Even smaller is the axisymmetric part of
the poloidal component of motion which is not shown in the plots of Figure 3.33.
At higher Rayleigh numbers the convection eddies spread farther into the interior
and in some cases become detached from the equator as can be seen in the plots

In this way the convection eddies contribute to the heat transport
from the inner boundary. But at the same time they acquire the properties of the
convection columns which are characteristic for convection at higher Prandtl num-
bers. Accordingly the differential rotation is steeply increased at Ra = 106 and a
tendency towards relaxation oscillation can be noticed in the upper right time series
of Figure 3.33. For additional details on low Prandtl number spherical convection
we refer to Simitev & Busse (2003a).

3.4.9. PENETRATIVE AND COMPOSITIONAL CONVECTION

Penetrative convection occurs when only part of the fluid layer is unstably strat-
ified and convection flows penetrate to some extent into the stably stratified part.
The subject of penetrative convection has been studied in the cases of the planetary
boundary layer of the Earth’s atmosphere and of the solar convection zone which is
bounded from below by a radiative core in which entropy increases with distance
from the center. But penetrative convection may also occur in planetary cores. In
the outer part of the Earth’s core, for example, the adiabatic temperature gradient
increases so strongly in absolute value that a subadiabatic temperature gradient may
be realised because it is sufficient to carry by thermal conduction the heat flux from
the core to the mantle. Penetrative convection could thus occur in an upper stably
stratified layer of the outer core.

The effects of a stably stratified sublayer of a convection layer are minimal when the
corresponding temperature contrast (subadiabatic temperature difference) is small
compared to the temperature contrast (superadiabatic temperature difference) in the
adjacent convectively unstable layer. This property reflects the ability of convection
to average the local variations of available buoyancy over the height of the layer. On
the other hand, strongly stably stratified sublayers may have an effect approaching
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Figure 3.35 - Compositional convection in the presence of thermal stratification.
The latter is described by Rae = −1.45 × 106 (−1.1 × 106) in the upper (lower)
row while the compositional Rayleigh number Racomp

i = 2×104 and Lewis number
L = 80 are the same in both cases. Lines of uϕ = const. (left half) and meridional
streamlines, r sin θ∂θup = const. (right half) are shown in the left circles. Stream-
lines, r ∂up/∂ϕ = const., temperature perturbations, Θ = const., and light element
concentration perturbation, all in the equatorial plane, are shown in the subsequent
plots (left to right). The values Pr = 0.1 and τ = 104 have been used.

that of a rigid boundary (Stix, 1970). Here we like to mention only the effect of a
stably stratified layer in a rapidly rotating sphere which has been studied by Zhang
& Schubert (1997, 2002). These authors find that convection in an inner part of a
fluid shell which is surrounded by a stably stratified outer layer can excite toroidal
motions in the outermost part of the shell. They call this phenomenon “telecon-
vection”. This phenomenon disappears, however, as more stable stratifications are
considered (Takehiro & Lister, 2001).

In the absence of an unstably stratified layer convection in a thermally stably strat-
ified layer can still occur if there exists a gradient in the composition of the fluid.
In the Earth’s core, for example, light elements accumulate in the lower part of the
outer core because of the growth of the solid inner core. Iron and nickel crystallise
at its surface leaving lighter elements in solution. The latter provide a source of
buoyancy for convection flows. It differs from the thermal buoyancy in that the
diffusivity of the light elements is much lower – by the factor 1/L where L is the
Lewis number8 – than the thermal diffusivity. The competition between the two
types of buoyancy gives rise to new types of convection, especially when the ther-

8 The Lewis number is the ratio of the thermal diffusivity κ to the chemical diffusivity.
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mal stratification is stabilizing. As has been shown by Busse (2002) in the case of
the rotating cylindrical annulus model the Coriolis force may be balanced by one of
the two buoyancy forces (which can be stabilizing or destabilizing) while the other
buoyancy force (which must be destabilizing) gives rise to convection flows as in the
absence of rotation. Figure 3.35 demonstrates that this effect also occurs in rotating
spherical shells. In particular close to the onset of convection – as in the upper part
of Figure 3.35 – the large scale m = 1–mode dominates as must be expected for
convection in the absence of rotation. We note that the pattern of shown in Fig-
ure 3.35 drifts very slowly in the prograde direction with a frequency proportional
to L−2. The corresponding third root of the dispersion relationship for the frequency
has not been determined explicitly in the analysis of Busse (2002), but it can easily
be shown that it gives rise to LRc + Ra = a6/α2 in the notation of that paper.

Convection flows visible on the Sun (see Chapter 6) do not seem to exhibit any
influence of rotation even though the Coriolis parameter τ based on the molecular
value of viscosity is huge. The level of turbulence associated with the convection
flows is so high, however, that an eddy viscosity of the order of 3 × 108 m2 s−1 is
appropriate. This gives rise to a value of τ of the order unity if the supergranulation
length scale (107 m) is used. Indeed effects of rotation are exhibited by convection
flows on this scale. One of this effects is the drift of hexagon like cells. As shown
by Busse (2004) this drift is a nonlinear phenomenon in contrast to the drift of con-
vection columns considered earlier in this chapter. The drift thus assumes opposite
directions for hexagonal cells with rising and with descending motion in the center.
As an example of this drift we show the retrograde drift of a dodecahedral pattern of
convection cells in Figure 3.36.

3.4.10. CONCLUDING REMARKS ON CONVECTION

The review of convection in rotating spherical fluid shells presented in this chapter
is necessarily incomplete in view of the vast literature that has been accumulated
in the past decades. We refer to the cited papers and the references given therein.
A topic that has not been mentioned so far is the possibility of extrapolation of the
results to conditions realised in planetary cores and in rapidly rotating stars. Based
on molecular diffusivities huge Rayleigh and Coriolis numbers prevail in these situ-
ations and it is advantageous to use parameters that are independent of diffusivities.
Ro2 ≡ Ra/(Pr τ 2) is such a parameter. Julien et al. (1996) refer to Ro as the con-
vective Rossby number, while Christensen (2002) calls Ro2 the modified Rayleigh
number. In the latter paper it is demonstrated that a modified Nusselt number defined
by Ñu = Nu/(τ Pr) appears to obey the asymptotic relationship Ñu = 0.0031 Ro5/2

in the case of convection in rotating spherical fluid shell with Pr = 1, η̃ = 0.35 and
Rai = 0 .

© 2007 by Université Joseph Fourier



198 Friedrich BUSSE & Radostin SIMITEV

Figure 3.36 - Drifting hexagonal convection cells in a slowly rotating spherical
shell. Two plots (Δt = 0.39 apart) of lines of constant ur in the mid surface,
r = ri + 0.5, are shown for Pr = 1, Rae = −6000, Rai = 3000, τ = 60, η̃ = 0.6.
In order to provide a preference for hexagonal cells with rising motion in the center
the term 0.05 × Θ2 – representing a typical deviation from the Boussinesq approxi-
mation – has been added on the right hand side of (3.158a).

The most important application of the theory of convection in rotating spherical fluid
shells is the dynamo process of the generation of magnetic fields in planets and in
stars. This topic will be addressed in Chapters 4, 5 & 6 of this book. Here we just
like to emphasise the intimate connection between the style of convection and the
structure of the magnetic field generated by it. This property has been the focus of
the papers by Grote & Busse (2001) and by Simitev & Busse (2005) and it has been
reviewed in the article by Busse et al. (2003).
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CHAPTER 4

THE GEODYNAMO

David Fearn & Paul Roberts

This chapter is devoted to the planet for which we have the best knowledge, namely
the Earth. We will review observational facts about the Earth’s magnetic field in
Section 4.1. We review the equations and parameters relevant to the Geodynamo in
Section 4.2. We elaborate on the theoretical results outlined in Chapter 1 to derive
the fundamental results appropriate to the Earth’s core in Section 4.3. The existing
constraints on the control parameters are addressed in Section 4.4. We then dis-
cuss the present status of numerical geodynamo models in Section 4.5. We focus
then on the difficult problem of the small scale turbulent flow in the Earth’s core in
Sections 4.6 to 4.10.2. Next, we touch on some relevant geophysical issues (Sec-
tion 4.7). Then (Section 4.8), we shall expound the traditional method, the insights
it gives and the difficulties it faces. This is followed (Section 4.9) by a descrip-
tion of the engineering approach. Finally we discuss future developments on the
geodynamo and a critique of turbulence in Section 4.10.

4.1. THE EARTH AND ITS MAGNETIC FIELD

4.1.1. A BRIEF HISTORY

Interest in the Earth’s magnetic field goes back some 2000 years, in particular to the
ancient Chinese, whose major achievements include the invention of the magnetic
compass and the subsequent discovery of declination, the angle between magnetic
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and geographic north. Initially, the compass was believed to be attracted to the pole
star. Later, the favoured source of attraction moved to the polar regions of the Earth
and subsequently to the interior of the Earth. This followed the discovery in Europe
in the XVIth Century of inclination, the angle of dip of the field direction. At this
time, considerable effort was expended in mapping the declination and inclination as
a potential aid to navigation.9 The year 2000 was the 400th anniversary of William
Gilbert’s treatise on geomagnetism De Magnete. This gave the first rational expla-
nation for the mysterious ability of the compass needle to point north-south; that the
Earth itself was magnetic.

Up until this point, the Earth’s magnetic field had been assumed to be steady, but it
was not long before a series of observations at Greenwich led Henry Gellibrand in
1634 to deduce that the declination changes with time. This was the first observed
feature of the so-called Geomagnetic Secular Variation (GSV), the slow (on a hu-
man timescale) change of the field emanating from the Earth’s core. From detailed
observations we now know this behaviour in considerable detail over the past few
hundred years (see for example Courtillot & Le Mouël, 1988; Bloxham & Jackson,
1992; Jackson et al., 2000). 10

4.1.2. S TRUCTURE OF THE E ARTH

A spherical harmonic analysis of the geomagnetic field averaged over a few years
shows clearly that the long-time field is essentially entirely of internal origin (see for
example the discussion in Backus et al., 1996). A key prerequisite to understanding
the generation mechanism of the field is therefore a knowledge of the interior of the
Earth. Our principal sources of information are: (A) the composition of meteorites
thought to be characteristic of the material from which the Earth was formed, (B)
the analysis of seismic waves, and (C) the properties of materials at high pressure
determined from high-pressure experiments and, more recently, theoretical calcu-
lations. Useful references, explaining the ideas, are Bolt (1982), Melchior (1986),
Stacey (1992) and Poirier (2000). A review of the theoretical approach can be found
in Alfè et al. (2002b).

These three sources give the following picture, see Figure 4.1. The Earth is com-
posed of a core of radius 3485 km surrounded by a rocky mantle of radius 6370 km.
On top of that is the thin crust on which we live. The mantle is a good electrical
insulator (except perhaps close to its boundary with the core) so the only possible

9 Modern maps can be found at “http://geomag.usgs.gov/”.

10 Much further information about the Earth’s field and its history can be found at the de Mag-
nete website at “http://www-spof.gsfc.nasa.gov/earthmag/demagint.htm”,
see also Chapter 1 of Merrill et al. (1996) and Stern (2002).
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Solid inner core

              Liquid core

                      Mantle

Figure 4.1 - The interior of the Earth. The outer region, the mantle, is composed
mainly of silicates, it is a good electrical insulator. Some 2885 km below the surface
lies the Earth core, composed mainly of liquid iron. It occupies a little more than
half the radius of the Earth. At the center the pressure increase is such that the iron
solidifies, this is the solid inner core, occupying 1215 km in radius. (See colour
insert.)

source of electromagnetic induction that can generate magnetic field is in the core.
The core has two distinct parts: an inner core of radius 1215 km that is solid and an
outer core that is fluid. The principal constituent of both is iron. While the density
of the inner core is consistent with it being pure iron, the density of the outer core is
up to 10% lighter than iron at core pressures. While there remains considerable con-
troversy as to the identity of the lighter element or elements that are mixed with iron
in the outer core, it is clear that the outer core is composed of a mixture of iron and
some lighter constituents. Possible candidates include sulphur, oxygen and silicon.
Recent studies have estimated the core density deficit at closer to 5% (Anderson &
Isaac, 2002) and have highlighted the importance of oxygen in the core (Alfè et al.,
2002a).

The presence of the solid inner core can be explained by the freezing of the outer
core. While the temperature in the interior of the Earth increases with depth, the
freezing temperature also increases because of the effect of pressure. Indeed, the
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latter increases more rapidly with depth. This explains why, as the Earth cools,
freezing takes place first at the centre. It is believed that the core was initially com-
pletely molten and that a proto inner core nucleated first at the centre of the Earth
several billion years ago and has grown steadily since then through the freezing of
the outer core. Estimates of the age of the inner core vary. Recent studies put it
as at least 3 Gyr (1 Gyr = 109 years) to explain the paleomagnetic measurements
of the Earth’s field, see Gubbins et al. (2003, 2004) but, for example, Labrosse et
al. (2001) estimate it at 1 Gyr based on the assumption of no radioactive heating in
the core. See also Roberts et al. (2001) who come to a similar conclusion but then
go on to consider the consequences of all the potassium 40 “missing” from the Earth
being in the core (see Section 4.1.4).

It is a common property of mixtures that the composition of the solid which freezes
is different from that of the fluid from which it has frozen. For example, if sea water
is cooled, the ice that forms contains very little salt, with the remaining fluid being
enriched in salt. The same process is believed to take place as the outer core fluid
freezes; as the mixture of iron and lighter constituent cools, what freezes is pre-
dominantly iron, with most of the light constituent being rejected into the remaining
outer core. This explains the observed density contrast between the inner and outer
cores which is larger than can be explained by density change upon freezing. Our
picture then is of a dense inner core growing steadily as the Earth cools, with the
density of the remaining outer core gradually decreasing as the fraction of light con-
stituent in it increases. This picture has major implications for the energy source of
the geodynamo which we discuss in Section 4.1.4.

4.1.3. THE GEOMAGNETIC FIELD

While direct measurements of the Earth’s field go back only a few hundred years,
we have information on its behaviour going back several billion years through pale-
omagnetic measurements, see for example Merrill et al. (1996). Though most rock
forming minerals are non-magnetic, all rocks exhibit some magnetic properties due
to the presence of traces of iron oxides. The magnetisation of these may be used
to determine both the local direction and intensity of the Earth’s field at the time
the rock was formed. Relatively short time-scale behaviour can be determined from
sequences of lava flows, and longer time-scale behaviour from sedimentary rocks.

Intensity measurements show that the field has roughly maintained its strength over
the past 3.5 Gyr, see Figure 4.2. When compared with the ohmic decay time of the
Earth’s core

τη =
r2
o

η
≈ 3 × 105 years, (4.1)

there is a clear requirement to explain how the field is maintained and what is its
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Figure 4.2 - Intensity of the geomagnetic field over the past 3.5 Gyr averaged over
100 Myr intervals (total number of data: 899). The current strength is 8×1022 A m2

(from Kono & Tanaka, 1995).

energy source. A sharper and even more striking estimate can be made by noting
that the slowest decaying mode in the sphere is the dipole, with decay time

τd =
r2
o

π2 η
≈ 3 × 104 years. (4.2)

Permanent magnetism is not a possible explanation because, below a depth of the
order of a hundred kilometers, the temperature inside the Earth exceeds the Curie
temperature (see for example Stacey, 1992). In (4.1), ro is the radius of the core and
η = 1/μσ is the magnetic diffusivity of the core (see Chapter 1, Section 1.1.1). For
the Earth, substituting ro = 3.485 × 106 m and σ ≈ 6 × 105 Sm−1 (Merrill et al.,
1996) gives η ≈ 2 m2 s−1 (see Table II for a summary of the core characteristics).

The principal component of the Earth’s field at present is a dipole whose axis is
roughly aligned with the geographic axis (the declination measuring the deviation).
Indeed, the average field over the past 5 Myr closely approximates a geocentric axial
dipole (see Merrill & McFadden, 2003). Directional paleomagnetic measurements
show that the field has reversed its direction many times. Reversals are irregular and
take place over a time that is short (of the order of 5000 years) compared with the
quiescent period between reversals. The last (the Brunhes-Mutuyama reversal) was
some 7 × 105 years ago. The reversal frequency has varied over time, see Figure
4.3 and McFadden & Merrill (2000). Typically there have been a few every mil-
lion years over the past 45 Myr but there was a period (the Cretaceous Superchron)
of some 20 Myr ending 86 Myr ago in which hardly any reversals have been found
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Table II - Some orders of magnitudes for the geodynamo.

Kinematic viscosity ν 10−6 m2 s−1

Thermal diffusivity κ 5 × 10−6 m2 s−1

Magnetic diffusivity η 2 m2 s−1

Angular velocity Ω 7.29 × 10−5 s−1

Mean core density ρ0 1.1 × 104 kg m−3

Outer core radius ro 3.48 × 106 m
Inner core radius ri 1.22 × 106 m
Core surface velocity |u| 10−4 m s−1

Core surface field |B| 5 × 10−4 T (10−4 T ≡ 1 G)

Ekman number E ν/Ωr2
o O(10−15)

Magnetic Ekman number Eη η/Ωr2
o O(10−9)

Rossby number Ro |u|/Ωro O(10−6)
Prandtl number Pr ν/κ 1/5
Magnetic Prandtl number Pm ν/η O(10−7)
Roberts number q κ/η O(10−6)
Reynolds number Re |u|ro/ν O(109)
Magnetic Reynolds number Rm |u|ro/η O(102 − 103)

Elsasser number Λ |B|2/Ωμ0ρ0η O(1)

(see Merrill et al., 1996). Heller et al. (2002) have investigated the relationship be-
tween the frequency of reversals and what is known about the field intensity. They
conclude “that there is not a simple correlation between reversal rate and intensity”.
In addition to reversals, features known as excursions have been found. When ob-
served in detail, these start off in a similar way to reversals, with an increase in
the declination and typically a decrease in intensity. However, in these events, the
field returns to its original polarity rather than the reversed one. Excursions may be
“aborted reversals” and may occur ten times more frequently than reversals, see for
example Gubbins (1999). They may be due to an intrinsic instability of the dynamo
process, see McFadden & Merrill (1993) and Zhang & Gubbins (2000). McFadden
& Merrill demonstrate that, following a reversal, there is a reduced probability of a
further reversal during a period of some 45000 yrs, a period of the order of τη.

The governing equations (4.5a-d) clearly admit −B as a solution if B is a solution,
so the existence of reversed fields is not a puzzle. However, we do not have a good
understanding of what triggers a reversal, what influences their frequency or why
some should fail. Simulations are beginning to give some insight into these issues,
see Section 4.5. For example, the pattern of heat flux at the core-mantle boundary
(CMB) has been shown to strongly influence reversal behaviour (Glatzmaier et al.,
1999), see Figure 4.5.

© 2007 by Université Joseph Fourier



4.1 – THE EARTH AND ITS MAGNETIC FIELD 207

cretaceous
superchron

Mid-age of sliding window (Ma)

E
st

im
at

e 
of

 r
ev

er
sa

l r
at

e 
�

6

5

4

3

2

1

0
0 20 40 60 80 100 120 140 160

Figure 4.3 - Frequency of reversal of the Earth’s magnetic field (from Merrill et al.,
1996). The vertical scale indicates the number of reversals per Myr (50 intervals per
analysis).

4.1.4. ENERGY SOURCES

The observation in the previous section that the Earth’s field has existed at around
its present strength for a time four orders of magnitude longer than the ohmic diffu-
sion time (4.1) clearly indicates the need for a mechanism for maintaining the field
against ohmic decay, together with an adequate power source.

A rough estimate of the power required can be obtained by setting u = 0 in (4.5a),
taking the scalar product with B/μ0 and integrating over all space V to give

P =
d

dt

∫
V

B2

2μ0

dV = −
∫

V

j2

σ
dV . (4.3)

The standard vector identity (A.26) and the divergence theorem have been used in
deriving (4.3). For an insulating mantle, the current j vanishes outside the core.
The left-hand side of (4.3) is the rate of change of magnetic energy. Now, since
μ0j = ∇ × B, the ohmic power dissipation can then be roughly estimated from the
right-hand side to give

P ≈ 4

3
π r3

o

|B|2

σ μ2
0 L2

, (4.4)

where |B| is a typical field strength and L an appropriate length scale (which cannot
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be greater than ro). If we choose L = 106 m, then (4.4) gives an ohmic power dissi-
pation of 1.4×1014|B|2 W . For a field strength of 6 mT this equates to 5×109 W . Of
course, this estimate depends crucially on our (rather arbitrary) choice of L. Shorter
length scales lead to higher dissipation. Loper & Roberts (1983) reviewed the vari-
ous estimates; these give P/|B|2 in the range from 0.7 × 1014 to 200 × 1014 WT−2.
Loper & Roberts (1983) favour a value, somewhere in the middle of this range, of
P/|B|2 = O(1015) WT−2. A field of 10 mT then requires O(1011) W . This gives
a ball-park figure of the power requirement of the geodynamo. More accurate esti-
mates can be expected from specific geodynamo models. For example, Glatzmaier
& Roberts estimate that at least 2 × 1011 W is required to balance ohmic diffu-
sion (the dominant loss mechanism) in models of their type (Glatzmaier & Roberts,
1995a,b, 1996a,b,c, 1997). Recent estimates have put the total heat transfer from the
core to the mantle at 8 TW, with 6.8 TW of that due to conduction in the core (An-
derson 2002) and 13 ± 4 TW (Lay et al., 2006). Olson (2003) reviews the thermal
interaction between the core and the mantle which has a vital controlling influence
on the evolution of the whole of the Earth’s deep interior.

The ohmic energy loss is made good by conversion [through the term ∇× (u×B)
in (4.5a)] from the kinetic energy of the flow u. In turn this kinetic energy must be
continually replenished. There are two possible means of driving the flow: internal,
by buoyancy forces and external, through forcing by boundary motion. The main
candidates are: thermal convection (T), compositional convection (C), and preces-
sionally driven flows (P). Cooling and radiogenic heating can lead to (T). The latent
heat and light constituent release at the inner-core boundary (ICB) associated with
the freezing of the inner core (see Section 4.1.2) can lead to (T) and (C). Preces-
sional driving of core flows is due to the gravitational torques exerted on the Earth
by the Sun and the Moon (see for example Malkus, 1994).

Over the years, there has been considerable debate about the source of the core fluid
motions driving the geodynamo. This has centered on two main issues: the power
that can be extracted from a particular energy source, and the efficiency with which
it can be converted into useful fluid motions (see for example Braginsky & Roberts,
1995 for a detailed discussion). In the late 1970s, precession had been discounted
on efficiency grounds and there were doubts as to the amount of radiogenic heating
in the core and the efficiency of its conversion into kinetic energy, see for example
Verhoogen (1980). This led to the revival of the idea of a gravitationally-powered
dynamo whose energy source is the gravitational potential energy stored in the outer
core. The gravitational potential energy is released as the Earth cools and the dense
(almost pure iron) inner core grows by the freezing of iron from the outer core. Ver-
hoogen (1961) was the first to associate freezing in the core with the dynamo power
source. He discounted the chemical segregation associated with freezing of a mix-
ture, preferring convection driven by the latent heat released during the crystalliza-
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tion of the inner core and the specific heat given out by the cooling core. Braginsky
(1963) was the first to recognise the contribution of compositional effects. Their in-
herent efficiency together with the estimated power available made this an attractive
power source when the other candidates appeared wanting on efficiency grounds.

Considerable progress has been made in understanding the complex process of freez-
ing of a mixture and applying the results to the Earth’s core. Meanwhile, recent work
on the other candidates means that precession should not be discounted [see for ex-
ample Aldridge (2003)] and a question still remains about radiogenic heating [see
for example Roberts et al. (2003)]. For a more detailed discussion, see for example
Fearn (1998).

The debate about what is driving the geodynamo continues and is linked with models
for the thermal history of the Earth and the age of the inner core, see for example
Labrosse et al. (2001), Roberts et al. (2003) and Gubbins et al. (2003, 2004). Most
dynamo models still adopt thermally driven convection as the basis for their driving
force, using a combination of internal and differential heating.

4.2. GOVERNING EQUATIONS AND PARAMETERS

Our governing equations are the magnetic induction equation (1.14), the Navier-
Stokes equations (1.60a,b) and the heat conduction equation (1.60c). It is most
convenient to deal with these in non-dimensional form. Adopting the outer-core
radius, ro, as our length scale, the ohmic diffusion time, τη, defined in (4.1) as our
timescale, ro/τη as our velocity scale, (Ωμ0ρ0η)1/2 (where Ω = 7.29×10−5 s−1 is the
rotation frequency of the Earth and ρ0 = 1.1× 104 kg m−3 is the mean core density)
as our scale for the magnetic field and ro(dT/dr) (where dT/dr is a characteristic
temperature gradient in the core) as the temperature scale, the governing equations
become

∂tB = ∇ × (u × B) + ΔB , (4.5a)

∇ · B = ∇ · u = 0 , (4.5b)

Eη [∂tu + (u · ∇)u] + 2k × u = −∇p + q R̃a T r + E Δu

+ (∇ × B) × B , (4.5c)

∂tT + u · ∇T = qΔT + S , (4.5d)

where S represents a source of heat (the analog of the uniform density of heat
sources in the sphere, β̃, introduced in Section 3.4.3). In most models, this is taken
to be uniform. The effects of compressibility are not believed to be of primary im-
portance in the dynamics of the core so the Boussinesq approximation is usually
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adopted. In this context, when applied to the core, the temperature T should be in-
terpreted as the deviation from the adiabatic temperature. To include the effects of
compressibility the anelastic approximation can be used, see (1.48). Glatzmaier &
Roberts use this for all but the earliest of their models, see Section 4.5.3.

The non-dimensional parameters appearing in (4.5a-d) are the modified Rayleigh
number R̃a (sometimes called “the buoyancy number”), the magnetic Ekman num-
ber Eη, the Roberts number q and the previously defined Ekman number E:

R̃a =
g0 α r2

o

Ω κ

dT

dr
, Eη =

η

Ω r2
o

, E =
ν

Ω r2
o

, q =
κ

η
. (4.6a,b,c,d)

In the above we have written the gravitational acceleration as g0g and taken g = −r,
the non-dimensional position vector, since, to a fair approximation, the strength of
the gravitational acceleration increases linearly with radius in the core. The defi-
nition of R̃a is that most appropriate to a rotating magnetic system. The standard
Rayleigh number, which is that normally used in non-rotating systems [see equation
(1.59a), where ΔTL−1 is replaced by dT/dr] is

Ra =
g0 α r4

o

νκ

dT

dr
=

R̃a

E
. (4.7)

Here we shall usually simply refer to (4.6a) as the “Rayleigh number” and only use
the term “modified Rayleigh number” when it is necessary to contrast it with that
given in (4.7).

The Ekman number E measures the strength of the viscous force (for length scales
of the order of the core radius ro) relative to the Coriolis force. The kinematic vis-
cosity in the Earth’s core is very poorly determined but most estimates are very
much smaller than the magnetic diffusivity. A typical value for the Earth is ν ≈
10−6 m2 s−1 (De Wijs et al., 1998), giving E = O(10−15). It might therefore seem
a very good approximation to neglect viscous effects altogether. In many fluid dy-
namical problems, provided the no-slip boundary conditions are also dropped, the
mainstream flow (i.e. that away from narrow viscous boundary layers) is well ap-
proximated by an inviscid theory. (Then, the only role viscosity plays is to bring the
tangential flow to zero at the boundaries. Such boundary layers are referred to as
passive.) Unfortunately, in rotating systems, things are not so straightforward. The
(Ekman) boundary layers are active or controlling; the mainstream solution cannot
be completed without taking into consideration the flow in the Ekman layers, partic-
ularly the Ekman pumping, the flow out of the boundary layer into the mainstream
(see Section 3.1.1). So far, two complementary approaches have been adopted to
deal with the problem of very small E. The first is to retain viscous terms and, for
reasons of numerical resolution, we have to accept very much larger values of E than
that given above. The alternative is to neglect viscous terms but have to accept the
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complications associated with Taylor’s (1963) constraint (see Section 4.3.1). This is
an example of the controlling influence of the boundary layers on the mainstream.

The magnetic Ekman number (4.6b) acts here as a Rossby number, and is sometimes
referred to as the Rossby number. In the fluid dynamics literature, the Rossby num-
ber is defined as the ratio of the fluid speed to the rotational speed. The fluid speed
will only emerge as part of the solution to (4.5a-d) and the two definitions will only
agree when the fluid speed is η/ro. The magnetic Ekman number Eη is very much
larger than E but is still small, O(10−9), so the inertial terms in (4.5c) are often
neglected; an approximation that filters out inertial waves and torsional oscillations
(see Section 4.3.4) .

For the Earth’s core, molecular diffusivity values give κ ≈ 5× 10−6 m2 s−1 (Poirier,
2000), giving q = O(10−6). Such a low value has important implications for the
nature of convective flow, and for dynamo action. Current thought favours using q =
O(1) to avoid the various complications that arise when q � 1. This is the sensible
approach until the complex interaction between flow and field that maintains the
field is better understood. We discuss the choice of parameter values and the various
restrictions on these in detail in Section 4.4.

There are two other important non-dimensional parameters that do not appear in
(4.5a-d). Had we chosen typical magnitudes |B| and |u| as our scales for the mag-
netic field and fluid velocity instead of those adopted above [(Ωμ0ρ0η)1/2 and ro/τη

respectively], then B would be replaced by Λ1/2B and u by Rmu, where the El-
sasser number Λ and magnetic Reynolds number Rm are defined by

Λ =
|B|2

Ωμ0ρ0η

(
=

σ|B|2

Ωρ0

=
τη

τMC

)
, Rm =

|u|ro

η
, (4.8a,b)

where the slow MHD timescale identified by Soward in Section 3.3.3 is given by

τMC =
Ω

ΩA
2 , where ΩA

2 =
|B|2

μ0ρ0r2
o

. (4.9a,b)

This is the timescale on which diffusionless magnetic waves evolve in a rapidly ro-
tating system where Ω � ΩA, the Alfvén frequency. For fully dynamic calculations,
the scalings adopted here are the most appropriate since the amplitudes of B and u
emerge as part of the solution. Hence Λ and Rm are not parameters that we can
prescribe. In simpler model problems, though, the field and/or flow are often pre-
scribed so that the alternative scalings based on |B| and |u| are often used. In either
case, Λ and Rm are very useful non-dimensional measures of the field strength and
flow speed respectively. Important alternative interpretations are in terms of the dif-
fusivity η; both Λ → ∞ and Rm → ∞ are associated with the perfectly conducting
limit η → 0.
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For the Earth, a value of Λ = 1 roughly corresponds to a field strength of 1 mT,
while Rm = 1 corresponds to a flow speed of about 4×10−7 m s−1. The latter, when
compared with the flows inferred from the GSV suggest values of Rm of O(103)
when based on the core radius as length scale. This exceeds the lower bounds that
have been derived for Rm if there is to be net field generation by dynamo action [see,
for example, Moffatt (1978), Roberts (1994), and Section 1.3.3] and is consistent
with the values found in hydrodynamic dynamo models (see Section 4.5).

4.3. FUNDAMENTAL THEORETICAL RESULTS

4.3.1. TAYLOR’S CONSTRAINT

The smallness of the geophysical values of E and Eη suggests that both inertial
and viscous terms be neglected in models of the core. This is the so-called magne-
tostrophic approximation. In this section we explore its fundamental consequences
which clearly also have important implications for the behaviour of numerical solu-
tions when E and Eη are small.

Setting Eη = 0, E = 0 in (4.5c) gives

2k × u = −∇p + q R̃a T r + (∇ × B) × B . (4.10)

Taking the φ-component gives

2 us = −s−1 ∂φp + [(∇ × B) × B]φ . (4.11)

Integrating this over the cylinder C(s), the cylinder of radius s coaxial with the
rotation axis gives

2

∫
C(s)

us dS =

∫
C(s)

[(∇ × B) × B]φ dS , ∀ s . (4.12)

The term on the left hand side is twice the net flow of fluid out of the curved surface
of the cylinder.

If viscosity is totally neglected, (4.11) applies throughout the core and the cylinder
extends to the boundaries of the outer core. There can therefore be no flow of fluid
into or out of the ends of the cylinder. Consequently, for an incompressible fluid,
the left hand side of (4.12) must vanish, giving∫

C(s)

[(∇ × B) × B]φ dS = 0, ∀ s . (4.13)
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This condition was first derived by Taylor (1963) and is referred to as “Taylor’s
condition” or “Taylor’s constraint”. It can be interpreted as that the net magnetic
torque on each cylinder must vanish. The generalisation of Taylor’s constraint to
regions with other boundary geometries, such as spherical surfaces with topography
or parallel plane boundaries, is discussed in Appendix C.

If viscous effects are retained in the problem, (but are only important in thin Ekman
layers at the boundaries of the outer core) then (4.11) is valid throughout the core
except for the Ekman layers, and the cylinder C(s) must be considered as extending,
not to the boundaries of the outer core, but to the outer edges of the Ekman layers.
The North-South flow in the Ekman layers leads to a net flow of fluid into the ends
of the cylinder. This must be balanced by a net flow out of the curved surface of
the cylinder, so the left hand side of (4.12) is in general non-zero. To evaluate∫

C(s)
us dS we must calculate the flow in the Ekman layers.

The problem is analysed by splitting the core into three regions, a thin spherical shell
that extends inward a short distance from the core-mantle boundary, a similar shell
adjacent to the boundary with the inner core, and the interior, which is the remainder
(and the bulk of) the outer core. In the interior, viscous effects are negligible, and
(4.11) holds. In the two boundary regions, viscous effects are important. The short
length scale in the radial direction permits a simplification to the governing equa-
tions and an analytical solution. This must then be matched to the solution in the
interior. The spherical geometry is unimportant in the boundary layers and can lo-
cally be approximated by a plane layer. In general, we define, for any f = f(r, θ, φ)
its azimuthal mean

f(r, θ) ≡ f ≡ 1

2π

∫ 2π

0

f dφ . (4.14)

The analysis relates the mean azimuthal flow uφ at the edge of the boundary layer
to the flow in the boundary layer in the θ–direction. The latter is related to the
left hand side of (4.12) since, for an incompressible fluid, the flow into the top
and bottom of the cylinder C(s) must be matched by a flow out through its curved
surface. The boundary-layer analysis then allows us to relate uφ to the right hand
side of (4.12). Details can be found, for example in Fearn (1994) [but note that he
uses an alternative definition of E that differs by a factor 2 and the factor 2 then does
not appear in the Coriolis force term in (4.10)]. The boundary-layer analysis can be
found in Chapter 3. We find, for the case where s is outside the tangent cylinder
(s > ri), and uφ(s, zT ) is assumed to take the same value as uφ(s, zB) that

uφ(s, zT ) =
1

2

(
cos θ

E

)1/2

T , where T (s) =

∫ zT

zB

[(∇ × B) × B]φ dz ,

(4.15a,b)
and zT =

√
1 − s2 and zB = −zT . This replaces (4.13) when the effects of Ekman

boundary layers are included in the problem.
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Figure 4.4 - An example of a solution
satisfying Taylor’s constraint. Shown
are contour plots of [(∇ × B) × B]φ.
Contour interval is 1. Solid lines rep-
resent positive and dashed lines rep-
resent negative contours.

We note here that (4.13) and (4.15a) are very different in character. The former
is a constraint on B while the latter is a means of determining uφ. In a typical
small E solution we shall expect T also to be small. For O(1) values of |B| this is
achieved by regions of positive [(∇ × B) × B]φ cancelling with regions of negative
[(∇ × B) × B]φ in the integral, see Figure 4.4. The balance is delicate and can be
expected to be difficult numerically.

4.3.2. THE “ARBITRARY” GEOSTROPHIC FLOW uG(s)

If equation (4.13) is satisfied then we can solve equation (4.10) for u, given B and
T , as we see below. However, the solution is not unique. If we add any uG(s) eφ to
u, then the additional Coriolis term can be written as

k × uG(s) eφ = −uG(s) es = −∇
(∫

uG(s) ds

)
, (4.16)

and hence can be absorbed into the pressure gradient term. Consequently if u is a
solution of (4.10), then so is u + uG(s) eφ for arbitrary uG(s).

Taking the curl of (4.10), and using (4.5b) gives

−2 ∂zu = ∇ × [(∇ × B) × B] + q R̃a (∇T × r) . (4.17)

Taking the axisymmetric part and integrating this with respect to z gives

2u =

∫ zT

z

∇ × [(∇ × B) × B] dz′ + qR̃a

∫ zT

z

(∇T × r) dz′ + F(s) , (4.18)
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where F(s) is an arbitrary function of integration. The flow u must satisfy the
boundary condition that (to leading order) there is no normal flow at the top and
bottom boundaries. These two boundary conditions give two expressions relating
us and uz which then determine Fs and Fz. In a non-axisymmetric system, the
third component uφ of the flow would be determined from ∇ · u = 0. However, in
this axisymmetric system uφ is independent of φ and so does not appear in ∇ · u.
Consequently Fφ is undetermined and we call it the “arbitrary” geostrophic flow
uG. We then have

uφ = uM + uT + uG , (4.19)

where

uM = 1
2

∫ zT

z

∇ × [(∇ × B) × B]φ dz′ (4.20)

is the magnetic wind, and

uT = 1
2
q R̃a

∫ zT

z

(∇T × r)φ dz′ (4.21)

is the thermal wind familiar in the meteorological literature (see, for example, Roberts
& Soward, 1978). Note that with our choice of the limits of integration in (4.20)-
(4.21), uM = uT = 0 at z = zT . Consequently the geostrophic flow uG = uφ|zT

.

The apparent arbitrariness of the geostrophic flow uG is a consequence of consid-
ering (4.10) in isolation; of considering the forcing terms on the right hand side as
prescribed, rather than as determined through (4.5a) and (4.5d). In practice uG is
not arbitrary. The manner in which it is determined depends on the importance of
the Ekman suction.

4.3.3. EKMAN STATES, TAYLOR STATES AND MODEL-Z:
DETERMINATION OF THE GEOSTROPHIC FLOW uG

If Taylor’s condition (4.13) is satisfied, then (4.10) can be solved for u up to the
unknown geostrophic flow. As Fearn & Proctor (1992) point out, it is the very ex-
istence of a “homogeneous solution” of the form uG(s)eφ that makes a “solvability
condition” of the form (4.13) necessary. Of course, uG(s) can only be considered as
arbitrary in the context of solving (4.10) for a given right hand side when (4.13) is
satisfied. In practice, uG is determined in one of two ways. Either Ekman suction is
important, so the left hand side of (4.12) is non-zero and Taylor’s condition does not
apply. Then we know uφ at the boundary through an expression like (4.15a). This
extra piece of information determines uG explicitly. Alternatively, Taylor’s condi-
tion does apply. The system (4.5a-d) then must adjust the magnetic field so that
Taylor’s condition is satisfied. The mechanism used to achieve this is to adjust the
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differential rotation (the ω–effect discussed in Chapter 1) by varying uG. The differ-
ential rotation stretches out poloidal field to generate toroidal field. By varying uG,
Bφ can be adjusted and perhaps (4.13) satisfied. This mechanism determines uG in
a very complicated implicit manner.

There is no guarantee that (4.13) can be satisfied. Fearn & Proctor (1987) tackled
the problem of the determination of uG through this mechanism, by choosing uG

to minimise the absolute value of the left hand side of (4.13) for a given poloidal
magnetic field and a flow that is prescribed (apart from the geostrophic flow). Their
method was very successful for certain choices of field and flow, but gave poor
results for other choices.

Non-axisymmetric magnetoconvection models and kinematic α2– and αω–dynamo
models and have been adapted to include a geostrophic flow determined by an ex-
pression similar to (4.15a). Without the feedback due to the geostrophic flow, both
problems are linear and would show exponential growth of their solutions for a suf-
ficiently large forcing. For forcing just above critical, the systems typically find
themselves in an “Ekman state” where equilibration of the amplitude of the solu-
tion is achieved through the action of the geostrophic flow. In this respect, it is the
condition (4.15a) that provides the dominant nonlinear effect, since it becomes im-
portant at much smaller amplitude of solution than all other nonlinear effects. The
reason for this is the small value of the Ekman number, giving an equilibrated solu-
tion amplitude of O(E1/4) (see Section 7.3 of Fearn, 1994). As the driving force is
increased, the system usually evolves to a state where (4.13) is satisfied (a “Taylor
state”) and it is the other nonlinear effects that are responsible for equilibration, this
time at higher [O(1)] amplitude; viscous effects no longer have a major influence
on the solution.

This picture of the nonlinear evolution of a dynamo has come to be known as the
Malkus-Proctor scenario, see Malkus & Proctor (1975). It is not the only possible
manner in which a dynamo can evolve. An (or the) alternative is where the Taylor
state is replaced by a state in which the solution amplitude is O(1) but where viscous
effects remain important, even in the limit E → 0. This is Braginsky’s (1975)
model–Z (see also Braginsky, 1994). Its fundamental difference from a Taylor state
is the manner in which Taylor’s constraint is satisfied or almost satisfied. In a Taylor
state, with |B| of O(1), (4.13) is satisfied with [(∇ × B) × B]φ [see (4.15b)] of
O(1) everywhere and regions of positive [(∇ × B) × B]φ cancelling with regions
of negative [(∇ × B) × B]φ when the integral over C(s) is taken. (This cancellation
effect is illustrated well in Fearn & Proctor, 1987.) There is strong coupling between
adjacent cylinders [since [(∇ × B) × B]φ is O(1)], providing the mechanism for
Taylor’s condition (4.13) to be maintained as the system evolves. By contrast, in
model–Z, (4.13) is almost satisfied, by [(∇ × B) × B]φ being small everywhere.
This is achieved by having Bs close to zero, while Bφ, Bz are O(1). This is because
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an alternative expression of Taylor’s constraint (for an axisymmetric field and an
insulating mantle) is ∫ zT

zB

BφBs dz = 0, (4.22)

see, for example, Fearn (1994). The meridional field is then almost aligned with the
z-axis, hence the name of the model. Since Bs is small, there is only small coupling
between adjacent cylinders C(s) and the system is unable to satisfy Taylor’s condi-
tion exactly. Consequently, the geostrophic flow remains dependent on the strength
of core-mantle coupling. Here, we have concentrated on viscous core-mantle cou-
pling, so uG remains dependent on E, and very large geostrophic flows are found in
the limit of small E, see for example Braginsky & Roberts (1987).

Note that in the above discussion we have used the description “O(1)” rather loosely.
This has been to avoid too detailed a discussion of the appropriate scalings and to
focus on the important distinction between the small amplitude Ekman state and the
high amplitude Taylor and model–Z states. Model–Z is discussed in detail in Bra-
ginsky (1994), and the relationship between model–Z and Taylor states in Roberts
(1989). The nonlinear role of the geostrophic flow on kinematic dynamo and mag-
netoconvection models is discussed in detail in Fearn (1994).

4.3.4. THE ROLE OF INERTIA

An arbitrary initial condition will not necessarily satisfy Taylor’s constraint, in which
case (4.10) has no solution. Of course, the full equation (4.5c) can quite happily be
time-stepped for arbitrary initial conditions. Taylor (1963) comments that if his con-
straint is not satisfied then “rapid torsional motion would be set up in which each
concentric cylindrical annulus rotated as a rigid body. The adjacent annuli are cou-
pled together, as if by elastic strings, through the magnetic field Bs. Because of
this linkage, the torsional motion would modify the fields until a state was reached
in which (4.13) was satisfied”. Taylor (1963) envisaged that, in a short time, this
adjustment would take place. Subsequently, the flow would continue to adjust in
just the manner required to ensure that Taylor’s constraint continued to be satisfied.
Indeed this is the process that determines the geostrophic flow uG in a Taylor state.

Should Taylor’s constraint fail to be satisfied, the azimuthal torque (4.15b) on cylin-
ders will be non-zero and the E−1/2 factor in (4.15a) indicates the generation of a
strong geostrophic flow. Inertia must then inevitably play a role. If we retain inertia
in our problem, but only for a geostrophic flow uG(s)eφ, we can repeat the analysis
of Section 4.3.1 to obtain, in place of (4.15a),

2 zT Eη ∂tuG + 2

(
E

cos θ

)1/2

uG = T . (4.23)
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The addition of the inertial term can be of assistance in finding steady solutions,
playing a technical role, preventing numerical instabilities in the small E limit, see
Jault (1995), in particular his equation (6). Glatzmaier & Roberts (1996a) intro-
duced the axisymmetric azimuthal part of inertia into their 3D hydrodynamic dy-
namo model, having neglected inertia in their earlier work (Glatzmaier & Roberts,
1995a,b).

In the limit of small E, (4.23) becomes an equation for torsional oscillations

2 zT Eη ∂tuG = T . (4.24)

An additional equation can be obtained by taking the expression (4.15b) and differ-
entiating it with respect to t:

2π s
∂

∂t
T (s, t) =

∫
C(s)

[
(∇ × B) × ∂B

∂t

]
φ

+

[
(∇ × ∂B

∂t
) × B

]
φ

dS . (4.25)

Substituting for ∂B/∂t from the induction equation (4.5a) and neglecting the diffu-
sion term, for an axisymmetric field it can be shown that

2π s
∂

∂t
T (s, t) = a(s)

∂2

∂s2

(uG

s

)
+ b(s)

∂

∂s

(uG

s

)
+ c(s) , (4.26a)

where

a(s) =

∫
C(s)

sB2
s dS , b(s) =

∫
C(s)

(
sB · ∇Bs + 2B2

s

)
dS , (4.26b,c)

and c(s) contains all the other contributions that do not involve uG. Note that Taylor
(1963) derived a version of this equation, without the left-hand-side by differentiat-
ing (4.13) rather than (4.15b). It was Braginsky (1970) who first derived an equation
describing torsional waves.

Equations (4.24) and (4.26a) form a hyperbolic system which may be expected to
admit oscillatory solutions about the steady state for which T = 0 (Moffatt, 1978).
In these torsional oscillations, each cylinder C(s) rotates about its axis. Recall that
flows of the form uG(s)eφ are unaffected by the Coriolis force, see (4.16). The
oscillations are controlled by their magnetic linkage through Bs and the shearing of
this field component by differential rotation; notice that it is only radial gradients
of uG/s that appear in (4.26a). The timescale of the torsional oscillations can be
determined by combining equations (4.24) and (4.26a). We find that

Eη
∂2

∂t2
∼ B2

s . (4.27)
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Recalling that time has been non-dimensionalised using τη and B using (Ωμ0ρ0η)1/2

we conclude that the characteristic time for torsional waves is

Eη
1/2

Bs

τη =
1

Bs

(
τη Ω−1

)1/2
= ro

√
μ0 ρ0

B∗
s

, (4.28)

where B∗
s is the dimensional radial field. From this we can see that the timescale

of torsional waves is essentially determined by the time it takes an Alfvén wave
propagating on the radial field to travel a distance of the order of the radius of the
core. If we choose an average radial field strength of 0.1 mT then the above gives
a time of the order of 130 years. Stronger fields give shorter times. Section 3 of
Roberts & Soward (1972) gives a more detailed analysis including a discussion of
the decay of torsional oscillations.

Assuming a field strength of 0.186 mT, Braginsky (1970) invoked torsional oscilla-
tions as a possible mechanism for explaining observations of variations in the length
of the day with a period of about 60 years (see Roberts et al., 2007). Jault & Le
Mouël (1991) also investigated the problem, looking in detail at electromagnetic
and topographic core-mantle coupling. Torsional oscillations continue to be of in-
terest as mechanism for explaining observations. For example Pais & Hulot (2000)
see evidence for torsional oscillations in their analysis of core flow at the CMB
deduced from geomagnetic models, and Bloxham et al. (2002) in an analysis of ge-
omagnetic data show that “geomagnetic jerks can be explained by the combination
of a steady flow and a simple time-varying, axisymmetric, equatorially symmetric,
toroidal zonal flow. Such a flow is consistent with torsional oscillations in the Earths
core”. Jault (2003) reviews this area.

4.4. PARAMETER CONSTRAINTS

The choice of the values for freely prescribable parameters in geodynamo models is
a compromise between realistic values for planetary interiors and computationally
tractable values. The balance will move to the former as our understanding of the
problem, computational techniques and computational power advance, but initially
a practical approach is wise; adopting values that produce well-resolved solutions.
Here we summarise some results from model problems that illustrate the dependence
of solutions on key parameters and discuss how these constrain what values of these
parameters we can reasonably use in geodynamo models.
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4.4.1. THE E KMAN NUMBER

As discussed in Section 4.2, using typical estimates of the molecular viscosity,
and the radius of the Earth’s outer core as our length scale, the Ekman number
E = O(10−15). It is this very small value that is the most fundamental source of
difficulty in solving the geodynamo problem. The (Ekman) boundary layers at the
CMB and ICB each have thickness of O(E1/2) (equivalent to about 0.1 m  for the
Earth). In a non-magnetic system (where the leading order balance is geostrophic)
both the convective length scale (see Section 3.4) and the shortest length scale of
the Stewartson-layer structure (see Section 3.1.4) associated with the tangent cylin-
der are of O(E1/3). Clearly, resolution of such structures in any numerical scheme
is impossible for any realistic value of E. The Stewartson-layer structure is modi-
fied by the presence of a magnetic field (see Soward & Hollerbach, 2000) but any
simulation has to be able to deal with situations where the field is, at least locally,
weak. The stiffness associated with Taylor’s constraint in the limit of small E (see
Section 4.3.1) is a further difficulty. The only options are to work with much larger
values of E or to adopt the magnetostrophic approximation E = 0. Work by Walker
et al. (1998) has identified a problem that affects both the E = 0 and E → 0 cases;
the development of small scale, high frequency waves, implying a time step of order
Eτη to ensure numerical stability. This has proved an insurmountable problem in
attempts to work in the magnetostrophic approximation.

Significant progress has been made using the finite E approach (see Section 4.5).
Even with substantial supercomputer resources, it is not feasible to reduce E much
below 10−5 (see for example Jones et al., 1995; Kuang & Bloxham, 1997, 1999). To
lower, what we might call the headline Ekman number, some authors have adopted
so-called hyperdiffusivities. These enhance the diffusivity for short length scales in
the θ– and φ–directions. Solutions are typically expressed through expansions in
spherical harmonics, for example

T =
L∑

�=m

M∑
m=0

Tm
� (r)Pm

� (cos θ)eimφ + c.c., (4.29)

where T is the toroidal part of the field, Pm
� are associated Legendre functions

(see for example Abramowitz & Stegun, 1965) and c.c. denotes complex conjugate.
Then, an example of hyperdiffusivity is defined by

ν = ν (1 + h �3), (4.30)

where h is some constant and � is the spherical harmonic degree. It is then ν that
appears in the definition of the Ekman number rather than ν. The effect of the hy-
perdiffusivity is to “damp small scales while allowing the large scales to experience
much less diffusion” (Glatzmaier & Roberts, 1995b). Glatzmaier & Roberts (1995b)
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use h = 0.075, achieving a headline Ekman number of 2×10−6. The other diffusiv-
ities κ and η are treated in the same manner. More recently, Glatzmaier & Roberts
have used h = 0.037 for ν and κ and 0.016 for η (Glatzmaier and Roberts 1996b,c).
The argument typically put forward to justify the use of hyperdiffusivities is that the
diffusivities are assumed to be eddy (sub-grid) diffusivities and the small resolved
eddies physically interact more strongly with the small unresolved eddies so they
should have larger diffusivities. The use of hyperdiffusion does distort the dynamics
of the core, resulting in viscosity retaining a controlling influence on the geostrophic
flow, for example, see Zhang & Jones (1997).

An important issue that is relevant to the question of how low E must be in order
to be characteristic of the geodynamo is highlighted by Jones (2000). He discusses
whether the geodynamo is supercritical or subcritical, in the following sense. It is
well known from linear studies (see for example Proctor, 1994) that, in a rapidly
rotating system, the modified Rayleigh number for the onset of thermally driven
convection R̃ac0 ≡ R̃ac(B = 0) is of O(E−1/3) in the absence of any magnetic field
(see Chapter 3). By contrast, in the presence of a prescribed magnetic field with
Λ = O(1), R̃ac reduces to O(1); the presence of the field facilitates convection.
Numerical studies (see Section 4.5.3) show that R̃a may have to be well above its
critical value in order to maintain a field. Nonetheless, when E � 1, it is possible
that a self-sustaining dynamo exists for R̃a < R̃ac0. Jones (2000) calls this situation
a subcritical dynamo and estimates that dynamos for E < 10−10 must be subcritical.
They may exist at larger values of E but all numerical models so far have required
R̃a > R̃ac0 for dynamo action, see for example Busse et al. (2003). Gubbins (2001)
argues that the Rayleigh number in the core is highly supercritical.

4.4.2. THE MAGNETIC REYNOLDS NUMBER

The magnetic Reynolds number Rm is a non-dimensional measure of the relative
importance of the induction term ∇ × (u × B) to the diffusive term ΔB. In the
absence of the former, it can be shown that the field B inevitably decays. For field
maintenance, the induction effect must be able to at least balance the diffusive losses;
i.e. Rm must exceed some minimum value [≥ O(1)]. Specific lower bounds on Rm
for dynamo action can be derived, see for example Roberts (1994) and Section 1.3.3.

In a fully hydrodynamic dynamo model, the flow u emerges as part of the solution
so Rm is not a parameter that can be freely chosen. The vigour of the flow depends
on the forcing whose magnitude is determined by the modified Rayleigh number
R̃a (see below). The level of the forcing must be sufficient that dynamo action is
taking place, while at the same time ensuring that Rm (which measures the strength
of the differential rotation) is not too large. Shear acts to inhibit convection (see
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for example Fearn & Proctor, 1983) and associated with this are short length scales
typically O(Rm−1/3). If Rm is too large, such length scales may be difficult to
resolve.

4.4.3. THE ROBERTS NUMBER

The situation described above is worse when the Roberts number q is small. Dif-
ferential rotation begins to have a significant effect when Rm = O(q) with length
scales O(Rm/q)−1/3 having to be resolved. With the requirement for dynamo action
that Rm be at least O(1) there is a clear problem when q is small, as is appropriate if
we use molecular values of the diffusivities. The situation may be helped somewhat
in that strong fields act to oppose shear (see for example Busse, 2002). Small values
of q have also been problematical in attaining solutions satisfying Taylor’s constraint
(see Section 4.3.1 and Soward 1986; Skinner & Soward, 1988, 1990). Further, pe-
culiar features are present in the R̃a versus Λ graph for the onset of thermally driven
convection when q � 1 (see Zhang & Jones 1996).

The source of many of these problems is the mismatch between the thermal and
ohmic timescales [τκ = r2

o/κ and τη, see (4.1)]. With molecular values of the dif-
fusivities, τη = O(105) years. This is an upper bound on the timescale on which
the dynamo must regenerate magnetic field. With q = O(10−5) (see Section 4.2),
the natural thermal timescale is longer than the age of the Earth. This mismatch
is probably also the source of the much higher values of R̃a found to be required
for dynamo action when q is small, see for example the discussion in Jones (2000),
Busse (2002, Figure 15) and below.

It is clear that, initially, to make progress, it is sensible to adopt O(1) values of
q. Indeed, parameter surveys have shown no dynamo action for q less than some
critical value qc which decreases with decreasing E, see for example Christensen et
al. (1999). They choose Pr = 1 so q = Pm. They found dynamo action only for
Pm > Pmc ∼ 450 E3/4. For E = 10−3, Pmc ∼ 2 and for E = 10−4 they found
Pmc ∼ 0.5.

4.4.4. THE RAYLEIGH NUMBER

The above discussion about disparate timescales suggests that very highly supercrit-
ical values of R̃a will be required for dynamo action if q is small. This is consistent
with the findings of Glatzmaier and Roberts (1995a,b) who use q = 0.1. Jones et
al. (1995) find dynamo action at much smaller values of R̃a − R̃ac0 for q = 10
compared with q = 1. The form of the buoyancy term in (4.5c) suggests that it is
qR̃a that is important for dynamo action.
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4.4.5. THE MAGNETIC EKMAN NUMBER

Motivated by the smallness of Eη, some numerical models of the geodynamo neglect
inertial terms altogether, a few choose the geophysical value, while many take the
view that Eη should be no smaller than the Ekman number. The magnetic Prandtl
number

Pm = E/Eη = ν/η (4.31)

is small in the core but the numerical constraints on E mean that most numerical
models take Pm = O(1). Taking the geophysical value of Eη while accepting the
numerical constraints on E would imply a large magnetic Prandtl number, while
neglecting inertial effects altogether corresponds to the infinite magnetic Prandtl
number limit. Whatever the choice, almost all studies choose a fixed value of Eη

and focus on other aspects of the problem. Very little work has focussed in on the
role of inertia in the dynamo problem (but see Fearn & Morrison, 2001; Fearn &
Rahman, 2004b). Fearn & Morrison (2001) find that dynamo action shuts off as
Eη is increased. This is consistent with the studies (see Section 4.4.3) that show no
dynamo action if q or equivalently Pm is too small.

4.5. NUMERICAL MODELS

There has been considerable progress over the past 10 years in modelling the geody-
namo, with many groups now actively involved. Reviews include those by Dormy
et al. (2000), Jones (2000), Roberts & Glatzmaier (2000), Busse (2002), Glatzmaier
(2002) and Kono & Roberts (2002). In making comparisons between different cal-
culations, care should be taken to note that different authors use different definitions
of the key non-dimensional parameters. The two main differences are:

– whether the factor 2 is retained, as here [see (4.5c)], in the Coriolis force or
whether it is absorbed into the definitions of E, R̃a, Eη and Λ,

– the choice of length scale. Here we have used the outer core radius ro. Many
papers use the core gap width ro − ri, and of course there are variations on the
choice of ri.

In the following discussion, where we give values of dimensionless parameters, we
are simply quoting the values given by the authors; we have not attempted to nor-
malise them to the definitions used here.
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4.5.1. NONLINEAR α2 AND αω MODELS

Proctor, in Chapter 1, has described linear mean-field α2– and αω–dynamos. For
these, in the supercritical regime, a seed field will grow without bound. In the con-
text of the geodynamo, the first nonlinear effect that becomes important as B grows
in strength is the geostrophic flow discussed in Section 4.3.1. The E−1/2 factor in
(4.15a) implies uG is of O(1) when |B| is of O(E1/4). The system is then in an
Ekman state. A number of studies have investigated the role of the geostrophic flow
in equilibrating mean-field dynamos. As the driving is increased (an increase in the
strength of α and/or ω), the system typically evolves towards a state in which Tay-
lor’s constraint (4.13) is satisfied as envisaged by Malkus & Proctor (1975), though
the manner in which this happens is model dependent, see for example Soward &
Jones (1983a). If the only nonlinear effect that is included in a model is uG, then,
when (4.13) is satisfied, the solution is no longer viscously controlled and will grow
without bound. Other (ageostrophic) nonlinear effects then must come into play to
equilibrate the solution with |B| = O(1) in a Taylor state. Studies using a spherical
geometry include those by Proctor (1977c), Hollerbach & Ierley (1991), Barenghi
(1992) and Hollerbach & Jones (1993, 1995). The latter solved

∂tB = ∇ × (u × B + αB) + ΔB , (4.32a)
2k × u = −∇p + ϑ r + E Δu + (∇ × B) × B , (4.32b)

together with (4.5b) for axisymmetric B and u and prescribed α and ϑ. The term
ϑ r models the buoyancy force, driving a meridional circulation as well as differen-
tial rotation [ϑ is a density perturbation as in Section 3.3.4 page 165, see equation
(3.136e)].

This system retains the simplicity of the mean-field dynamo by parameterising non-
axisymmetric effects by the α–effect while including the key nonlinear interactions
between B and u; the field drives a flow through the action of the Lorentz force in
(4.32b) and this flow acts back on the field in (4.32a).

Hollerbach & Jones (1993, 1995) considered a system with a finitely conducting
inner core and demonstrated the stabilising effect it could have on dynamo solutions.
Fotheringham et al. (2002) and Fearn & Rahman (2004a) have extended the model
to investigate the stability of axisymmetric fields to non-axisymmetric instabilities
and found that such instabilities can significantly constrain the strength of field that
can be generated.

4.5.2. 2.5D MODELS

The term “2.5D” is applied to models that solve the convectively-driven system
(4.5a-d), resolving fully in radius r and colatitude θ but with only very restricted res-
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olution in azimuth φ. The motivation for this is to produce a problem that is tractable
with moderate computing resources. The justification is from Cowling’s theorem
(see Section 1.3.4). We know that an axisymmetric field cannot be maintained by
fluid motions. The interaction between axisymmetric and non-axisymmetric parts
of the system are therefore a key ingredient of the dynamo problem. So, simply con-
sidering the axisymmetric part and even one non-axisymmetric mode ensures that
this key ingredient is present in the model.

Jones et al. (1995) reported the first results from a 2.5D model. The results were
encouraging, producing fields of around the right magnitude and associated with
flow strengths consistent with those deduced from the secular variation. Most of
their calculations are for an Ekman number of 10−3 (note that their definitions of
the Ekman and modified Rayleigh numbers have a factor 2 in the denominator and
are based on the gap-width ro − ri as length scale). Their single non-axisymmetric
mode has azimuthal wavenumber m = 2. They consider both q = 10 and q = 1 and
find that while for R̃aJ = 50 (a subscript J denotes their definition of the parameter)
is sufficient to maintain a dynamo for q = 10, R̃aJ = 1600 was required to sustain
a field when q = 1. This feature of increasing R̃a with decreasing q is one that is
reinforced by 3D studies.

Subsequent studies have proceeded to use the model to investigate, for example, the
effect of varying the Ekman number (Sarson & Jones, 1998), the effect of CMB
heterogeneity (Sarson et al., 1997) and reversals (Sarson & Jones, 1999, Sarson,
2000). The model has been used to good effect in elucidating the results from 3D
models and in understanding dynamo behaviour in different parameter regimes (see
below and Jones, 2000).

4.5.3. 3D MODELS

The first attempts at 3D calculations were by Zhang & Busse (1989, 1990). Their
calculations used stress-free boundary conditions which reduces the problem of re-
solving viscous boundary layers. This was appropriate since computing resources
were limited; allowing only modest space resolution. Furthermore, resolution in
time was restricted to a single mode; they did not use a time-stepping method,
instead following a bifurcation sequence from stationary fluid, to steadily drifting
finite amplitude convection, to a finite amplitude convection driven dynamo. Solu-
tions were sought proportional to exp[i(φ − ct)] so all components of the solution
were forced to drift at the same wave speed c. They used E = 10−3 and found
dynamo solutions. Unfortunately, attempts to follow these to lower E failed; the
dynamo action found did not persist as E was reduced.

The fully 3D time-stepping calculation of Glatzmaier & Roberts (1995a,b) marked a
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major step forward. They used q = 0.1 and found maintenance of a field of strength
up to 56 mT. Glatzmaier & Roberts found that very high values of their Rayleigh
number11 (defined as g α Q/2 Ω cP ρ κ2 ≈ 6 × 107, where Q is the heat flux at the
bottom of the core and cP the specific heat at constant pressure defined on page 8)
were required to give dynamo action. This high value at small q is consistent with
the trend found by Jones et al. (1995) who speculate that the reason is that convective
velocities scale with q R̃a rather than R̃a. The single integration of Glatzmaier &
Roberts (1995a,b) required substantial supercomputer resources and simulated only
40,000 years. An important feature of the simulation was that it included a field
reversal.

Following on from this pioneering work, several groups have produced their own
geodynamo models. Increasing computing power has allowed longer integrations
and modest exploration of parameter space. Most models use a similar (spectral)
numerical approach (see for example Hollerbach, 2000) and give good agreement
for a simple steady benchmark solution (see Christensen et al., 2001). Jones (2000)
has reviewed what has been learnt from the first 5 years of this work. He finds it use-
ful to divide the calculations that have been done into two categories which he calls
Busse-Zhang (BZ) and Glatzmaier-Roberts (GR) models. The distinction is made
according to the choice of the key parameters q , R̃a and E . BZ calculations typically
have R̃a a few times R̃ac0 (the critical value for the onset of convection in the rapidly
rotating system in the absence of any magnetic field), q ∼ 10 and 10−4 ≤ E ≤ 10−3 .
They are characterised by velocities having magnitude of O(10) on the thermal
diffusion timescale [so the magnetic Reynolds number Rm = O(100), sufficient
for dynamo action]. The magnetic field has only a weak influence on convection
which takes place mostly outside the tangent cylinder. There is no strong differ-
ential rotation, poloidal and toroidal fields are comparable in magnitude and the
dynamo can be thought of as of α2–type. GR calculations are more supercritical
with R̃a ∼ 100 R̃ac0 and therefore much more computationally intensive. (Conse-
quently most published work is in the BZ regime.) The larger R̃a is permitted by
going to lower E. (Increasing R̃a at fixed E can result in dynamo action shutting off.)
Convective velocities are larger, permitting lower values of q. There is a stronger
differential rotation and the dynamo is more of αω–type, although the peak poloidal
field strength remains comparable with the that of the toroidal field.

Most of the work described above is for what Jones (2000) refers to as the “zero-
order model”, that is a spherically symmetric Boussinesq basic state with only
one buoyancy source. The main exception is the work by Glatzmaier & Roberts
(1996a,b,c) (and their subsequent papers) which use the anelastic approximation

11 Which is (up to a factor 1/2) formally equivalent to our modified Rayleigh number R̃a, since
their temperature is scaled with Q / [cP ρ κ (ro − ri)].
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and both thermal and compositional buoyancy. Even within the zero-order model
there is considerable scope for variation. As well as choice of the key governing
parameters q, E, Eη and R̃a models differ in:

– Inner core. Most models include an inner core of radius about one third of that
of the outer core with an electrical conductivity comparable with (and usually
the same as) that of the outer core. Some have no inner core while others
choose an insulating or perfectly conducting inner core. Wicht (2002) has
recently concluded that in his model, the inner core does not play an important
role in Earth-like reversal sequences.

– Buoyancy distribution. Even with thermal buoyancy only, there is scope to
choose differential heating, internal heating or some combination of the two.

– Inertia. Its size is determined by the choice of Eη. Some models neglect it
altogether (Eη = 0) while others include it partially, for example only the
axisymmetric azimuthal part important for the geostrophic flow.

– Boundary conditions. The values of E that we are forced to use in order to
give a numerically tractable problem mean that the role of viscosity is sig-
nificantly amplified compared with the real Earth. Kuang & Bloxham (1997,
1999) have applied stress-free boundary conditions, arguing that this reduces
somewhat the influence of viscosity, in partial compensation for the effect of
the larger Ekman number. Most calculations continue to apply rigid boundary
conditions on u.

Beyond the zero-order model, there have been several developments:

– Density. As mentioned above, Glatzmaier & Roberts (1996a,b,c, 1997, 1998)
have championed the use of the anelastic approximation and of both thermal
and compositional buoyancy. Their’s is the only model that deals with the
sources of buoyancy (mostly at the ICB) in a fully consistent manner, directly
linking them to cooling at the CMB.

– Heterogeneous boundary conditions. The heat flow across the CMB is not
spherically symmetric. Motivated by this, several groups have investigated
the effect of heterogeneous thermal boundary conditions at the CMB. Glatz-
maier et al. (1999) have shown the strong influence the choice of boundary
condition has on reversal frequency. Olson & Christensen (2002) find that
“When the amplitude of the boundary heat flow heterogeneity exceeds the av-
erage heat flow, the dynamos usually fail” and also find similarities between
the present field and that produced by a model with boundary heat flow de-
rived from lower-mantle seismic tomography, see also Christensen & Olson
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Figure 4.5 - An example of the influence heterogeneous heat flux boundary condi-
tions on the reversal behaviour of a dynamo model. From Glatzmaier et al. (1999).
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(2003). Bloxham (2000) compares the secular variation in the Kuang & Blox-
ham (1997, 1999) model with the paleomagnetic secular variation. He finds
that, while there is a fair agreement for the meridional distribution, the ampli-
tude in the numerical simulations is smaller by a factor of at least two. When
he includes heterogeneous CMB heat flow in the model, he finds that he can
match the amplitude of the paleomagnetic secular variation .

As computer power has increased and more groups have constructed their own mod-
els, a large number of model variations has been studied and several groups have
undertaken parameter surveys (for example Christensen et al., 1999, Kutzner &
Christensen, 2002, Morrison & Fearn, 2000, Fearn & Morrison, 2001, Simitev &
Busse 2002, 2003b).

4.6. TURBULENCE IN THE EARTH’S CORE:
THE ENDS JUSTIFY THE MEANS?

During the past decade, a number of fully nonlinear, three-dimensional numerical
simulations of the geodynamo have been published. As explained in the previous
section, several of these have mimicked the geomagnetic field remarkably well. The
success has been so great that some commentators have even gone so far as to say
that the origin of the Earth’s magnetism is a mystery no longer, even though the
simulations cannot, by several orders of magnitude, employ estimated values for
the material properties of the core, especially its diffusivities. Worse still, they in-
adequately resolve the flow and field. And yet the simulations are encouraging!
This unreasonable success is called the geodynamo paradox. (See also Glatzmaier,
2002.)

The Earth’s core is, so most geophysicists believe, driven into motion by buoyancy
forces so strong that the flow and field are turbulent, fluctuating on every length and
time scale. These irregularities, it is anticipated, are most pronounced for the small
scale “eddies”, but the occasional polarity reversals betray the stochastic nature of
core flow on large length scales too. There is a lower limit, F (say), on the length
scales  that can be resolved in numerical simulations. This limit is continually being
reduced as computer technology advances and as high speed machines become in-
creasingly available. Already the greater variability of small scale features has been
confirmed, and polarity reversals have been mimicked; see, for example, Glatzmaier
& Roberts (1995), Glatzmaier et al. (1999), Kageyama et al. (1999). Nevertheless,
the physics of the unresolved scales,  < F , have been ignored. Disturbingly, the
success of the simulations has sometimes been seen as sufficient justification for the
drastically enhanced diffusivities and the neglect of the unresolved scales, the one
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magically compensating for the other; “the ends justify the means”! More generally,
it is recognised that the basics of the simulations need to be better understood and
improved. This review describes some of the attempts that have been made, and are
being made, in this direction.

Two main approaches have been tried. The “traditional method” grew from tech-
niques similar to those used with success in statistical mechanics. It seeks evolution
equations governing variables averaged over an ensemble of identical systems. It
is an approach that predates the advent of electronic computers and makes no ref-
erence to them. In contrast, the other approach, which we call the “engineering
method” is geared to numerical computation. It recognises explicitly the existence
of the GS-SGS frontier,  = F , separating the unresolved sub-grid scales (SGS)
from the resolved grid scales (GS). It seeks evolution equations for GS variables
that incorporate the SGS realistically. A numerical integration that makes use of
these equations is called a large eddy simulation (LES). Somewhat arbitrarily, we
shall assume that the GS-SGS frontier today is approximately at F ≈ 104 m, so
that, in terms of their wavenumbers, the SGS are defined by

k > kF , where kF = 1/F ≈ 10−4 m−1 . (4.33a,b)

“Why,” the reader may ask, “should we concern ourselves with these matters? Surely,
with time and patience, the geodynamo paradox will resolve itself? Isn’t it certain
that, as computer technology advances, all the important scales of core MHD will
ultimately be numerically resolved?” While it is undoubtedly true that the GS-SGS
frontier will be continually pushed back, there is no prospect in the foreseeable fu-
ture of resolving all significant scales. Meanwhile, progress requires that the effect
of the SGS on the LES is dealt with in a physically sensible way.

The notation in the sections on turbulence in the Earth’s core departs slightly from
that used elsewhere in the book. The main differences are:

– The fluid velocity is U and not u. This is because large and small letters are
used here in different ways for the same physical quantity;

– The fractional density excess, C, which is called the codensity, is used instead
of temperature T or entropy S to describe buoyancy. Not only is this more
general (since it recognises that compositional density differences might be a
part of C) but also it avoids conflict with the use of large and small letters,
since T and t (in place of C and c) would risk confusions with the time, t.
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4.7. PRELIMINARY CONSIDERATIONS
ON TURBULENCE

4.7.1. THE ENERGY SOURCE

As mentioned above, buoyancy is usually held responsible for core motions and
fields. More specifically, it is argued that the inner core has been created by so-
lidification during the general cooling of the Earth. As the inner core continues to
advance upwards, freezing releases latent heat and light material from its surface,
both of which provide buoyancy. This process must be potent enough to supply the
heat lost by the core through the conduction of heat down the core adiabat, which is
estimated to be on the order of 5 TW (1 TW = 1012 W). It must also make good
the energy dissipated by the magnetoconvection, which has been estimated to be
1 − 2 TW by Roberts et al. (2003) and 0.2 − 0.5 TW by Christensen & Tilgner
(2004). Although this energy is fed back into the core and helps to maintain the
convection, considerations of the thermodynamic efficiency of the core, regarded
as a heat engine, require a convective heat flow from the core, over and above the
adiabatic heat flow, of perhaps as much as 5 TW, making a total of 10 TW.

A crude estimate of the radial heat flux is ρCp〈θUr〉, where Cp (≈ 800 J kg−1 K−1)
is the specific heat, and θ is the temperature excess above the adiabat; this is posi-
tive where hot fluid rises and negative where it descends. The horizontal average,
〈θ Ur〉, is therefore positive. We may crudely estimate 〈θ Ur〉 as 1

3
V ΔT , where ΔT

is the temperature difference in K between the rising and falling material; the factor
1/3 is included to allow for the fact that only the vertical component of U is rele-
vant. This leads to a radial heat flux of approximately 300 ΔT W m−2. Assuming
that this is approximately the same everywhere beneath the boundary layer at the
core surface, the convective flow of heat is 4 × 1016ΔT W. The postulated 5 TW
requires that ΔT ≈ 10−4 K. The corresponding density difference is approximately
Δρ = ραΔT ≈ 10−5 kg m−3, where α ≈ 10−5 K−1 is the coefficient of thermal ex-
pansion. Braginsky & Roberts (1995, 2002), who included compositional buoyancy
also, estimated that ΔC = Δρ/ρ ≈ 10−8.

The light material created at the surface of the inner core is mixed throughout the
fluid core by its own buoyancy. Many laboratory experiments and numerical sim-
ulations of convection show the light material rising in “plumes”, mixing with its
surroundings as it does so. It should be emphasised however that the buoyancy in
the core, as quantified by the appropriate dimensionless parameter (the Rayleigh
number, Ra), is much stronger than in the experiments and simulations. For ex-
ample, the simulations of Chen & Glatzmaier (2005) show plumes but their Ra is
only 109; in contrast, Ra is probably closer to 1024 in the core! Under these circum-
stances, the coherence required for a plume to exist is absent: turbulent convection
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spreads the light material almost evenly throughout the fluid core. The fractional
density excess, ΔC = Δρ/ρ ≈ 10−8, creates a uniform top-heavy gradient, β, of
order 5 × 10−15 m−1. The destabilizing effect of this gradient is represented by the
(imaginary) Brunt frequency, ωα, defined by

ω2
α = gβ . (4.34)

[We use this notation in order to ease comparison between the analysis that follows
and that of Braginsky & Meytlis (1990). It should be understood that the suffix α
relates to the thermal expansion coefficient and not to the α–effect of mean field
electrodynamics.] Taking g ≈ 5 m s−2, we find that ωα ≈ 10−7 s−1, the value we use
below.

4.7.2. ORDERS OF MAGNITUDE

Let Ω = Ω ez be the angular velocity of the Earth, and U the fluid velocity rel-
ative to the reference frame that rotates with the mantle; ea is the unit vector in
the direction of coordinate a and ∂a will be the partial derivative with respect to a.
The density of the core, ρ, is assumed to be uniform except when evaluating the
buoyancy force created by variations in the codensity C, i.e. for simplicity we adopt
again the Boussinesq approximation. We shall consider thermally-created C only,
so that C = −αθ. The thermal diffusivity is denoted by κ, the kinematic viscosity
by ν and the magnetic diffusivity by η. The constancy of ρ makes it convenient to
use what are sometimes called Alfvén units: the magnetic field, B, is divided by
(μ0ρ)1/2, and therefore has the dimensions of (Alfvén) velocity, 1 cm s−1 being ap-
proximately equivalent to 11 G = 1.1 mT. The same factor is removed from the
electric field E. The current density, J, is divided by (ρ/μ0)

1/2 so that J = ∇ × B;
here μ0 is the magnetic permeability.

One reason why the MHD of the core differs so much from the MHD of plasmas
(discussed in Chapter 6 and Chapter 7) lies in the dissimilar physical properties of
the working fluids. The Earth’s fluid core is a liquid metal alloy, and it is character-
istic of such materials that Pm � 1 , q � 1 , and Pr = O(1) (see Table II). For
discussions of plasma turbulence, see for example Biskamp (2003) and Yoshizawa
et al. (2003).

As we have seen Section 4.2, the relative importance of viscous and Coriolis forces
is quantified by the Ekman number E = ν/ΩL2. If we take L ≈ 2 × 106 m to be
characteristic of the large length scales of the core, we obtain E = O(10−15), from
which we may infer that the viscous forces are much the smaller on the large scales
L. If E is redefined using a smaller scale  instead of L, E is increased, showing that
viscous forces are always significant on small enough length scales (such as those
of boundary layers).
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It is generally agreed that the fluid core is in a strong field state, meaning that J×B,
which is the Lorentz force (per unit mass, i.e. acceleration), is comparable with (or
somewhat greater than) the Coriolis force, 2Ω × U. This statement is to be under-
stood in a general sense, for special circumstances exist in which these forces are
small or ineffective. For example, in a nonmagnetic system, rotation favours flows
that are two-dimensional with respect to the direction of Ω. In such a “geostrophic
motion”, the Coriolis force is irrotational and cannot drive convective circulations,
a point that is made transparent by absorbing it into the pressure gradient. When
the motion is slightly ageostrophic, the Coriolis force can mostly be absorbed into
the pressure gradient, the remnant being small compared with 2ΩU , which then be-
comes a poor estimate of the efficacy of the Coriolis force, 2Ω × U. Similarly,
a nonrotating MHD system favours U and J that are nearly two-dimensional with
respect to the direction of B; then JB becomes a poor estimate of the efficacy of
the Lorentz force, J × B. More generally, in a rotating MHD system, the Coriolis
and Lorentz forces favour states that change slowly in the directions of Ω and B
compared with their variation in the direction of Ω × B, perpendicular to both Ω
and B. Although the “constraints” imposed by the Coriolis and Lorentz forces are
important in determining the state of a rotating MHD system such as the Earth’s
fluid core, we ignore them in the order-of-magnitude estimates of this subsection.

The westward drift of large scale magnetic features across the Earth’s surface cor-
responds to a motion at the core surface of order 10−4 m s−1 and this is usually
assumed to be the characteristic speed U = |U| of core flow. The relative mag-
nitude of the Coriolis force and inertial force U · ∇U is quantified by the Rossby
number, Ro = U/ΩL = O(10−6), from which we may infer that the inertial forces
are much the smaller on the large scales L. If Ro is redefined using the smaller scale
 instead of L, Ro is increased, showing that inertial forces are always significant on
small enough length scales.

In nonrotating systems, it is often argued that there is an approximate equipartition
between the kinetic and magnetic energy densities, K and M, per unit volume. This
is not true in a strong field system. The large scale velocity U and field B contribute
most to K ∼ 1

2
ρ|U|2 and M ∼ 1

2
ρ|B|2. Since the Coriolis and Lorentz forces are

comparable and both greatly exceed the inertial force, K is smaller than M by a
factor of order Ro.

For the length scale , on which the typical flow and field are of order u and b (say),
the viscous and ohmic dissipation rates are σν ∼ ρν(v/)2 and ση ∼ ρη(b/)2,
respectively. Even though U and B may be larger than u and b respectively, it
obviously does not necessarily follow that U/L > v/ and B/L > b/. In other
words, when σν and ση are summed for all length scales , the large scales may not
make the greatest contributions to the total viscous and ohmic dissipation rates, Qν

and Qη, per unit volume. Consider an extreme case: suppose the scales for which
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Ro = u/Ω is O(1) or larger are the scales that make the greatest contributions
to Qν and Qη. On these scales, the Coriolis force is relatively unimportant and
equipartition, u ∼ b, is plausible. Then Qη/Qν ∼ η/ν 
 1. This disparity is only
increased if larger scales, for which Ro < O(1) , make the greatest contributions to
Qν and Qη. We conclude that the energy received by the motions and fields from
buoyancy is mainly dissipated by Joule heating.

4.7.3. BASIC EQUATIONS AND THEIR AVERAGES

Let us rewrite Boussinesq equations (see Chapter 1) governing magnetoconvection
in the core using the codensity C (note that we use here U to denote the velocity
field, as u will be used for an expansion below)

∂tU + U · ∇U + 2Ω × U − ν ΔU = −∇P + B · ∇B + Cg , (4.35a)
∂tB + U · ∇B − η ΔB = B · ∇U , (4.35b)
∂tC + U · ∇C − κ ΔC = SC , (4.35c)
∇ · U = ∇ · B = 0 . (4.35d)

As earlier in the chapter, P is a reduced pressure including the centrifugal and mag-
netic pressure terms and SC is the source of C, supposed given.

The traditional approach of turbulence theory envisages averages over an ensemble
of identical systems. The idea of an ensemble average is an old one, long predat-
ing electronic computation and the difficulties of numerical simulation. We shall
therefore initially refrain from using the GS, SGS, LES terminology. When the sta-
tistical properties of the turbulence at a point x and time t are independent of x,
the turbulence is “homogeneous”; when they are also independent of direction, it is
“isotropic”; if they are independent of t, it is (statistically) “steady”. The statistical
properties may be different when viewed in a mirror (i.e. under parity inversion; see
below). Since the core is inhomogeneous, we shall not be dealing with homoge-
neous or isotropic turbulence but, in an approximate sense described below, it may
be regarded as “almost” homogeneous or isotropic.

Ensemble averages obey Reynolds rules:

F + G = F + G , F G = F G , F g = 0 , (4.36a,b,c)

where g = G − G is the “fluctuating part” of G. It is useful, but not essential, to
represent all variables in this way

U = U + u, B = B + b , C = C + c , P = P + p . (4.37a,b,c,d)
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The primary aim is to determine the evolution of the mean fields, U, B and C. On
substituting (4.37a–d) into (4.35a–d), and averaging, the equations governing the
mean fields result:

∂tU + U · ∇U + 2Ω × U − ν ΔU

= −∇P + B · ∇B + Cg + M
u
, (4.38a)

∂tB + U · ∇B = B · ∇U + η ΔB + M
b
, (4.38b)

∂tC + U · ∇C = SC + κ ΔC + M
c
, (4.38c)

∇ · U = ∇ · B = 0 , (4.38d)

where M
u

= −∇ · R, M
b
= ∇ × E , M

c
= −∇ · I, (4.39a,b,c)

Here R is the Reynolds stress tensor, E is the mean electromotive force (EMF), and
I is the turbulent codensity flux:

R = uu − bb, E = u × b, I = uc. (4.40a,b,c)

Despite its name, R is dimensionally a stress tensor only after multiplication by ρ.

Clearly, one cannot make use of (4.38a–d) if M
u
, M

b
and M

c
are unknown. If they

cannot be computed, they must be specified. An ad hoc specification has the best
chance of success if it is simple, and is based on a physically plausible picture of
how the fluctuating fields influence the mean fields.

4.7.4. QUALITATIVE DESCRIPTIONS OF TURBULENCE

In the spirit of kinetic theory, the ensemble average, Q, of a quantity Q at x and t
is sometimes visualised as a local average, taken over a small length scale  and a
small timescale τ surrounding (x, t). Because turbulence exists on many length and
time scales, it is hard to make this idea precise; the average generally depends on
the choice of  and τ . One may however imagine that, amongst the many length
and time scale, there exists one length scale D and one time scale τD that defines
the “dominant” mode, in the sense that only length and time scales of order D and
τD and smaller influence the large scales significantly. Plausibly, when the local
average of Q is computed using any  and τ in the intervals D �  � L and
τD � τ � T = L/U , the result is insensitive to the chosen  and τ , and is a good
approximation to the ensemble average, Q. Systems in which such ranges of  and
τ exist are called two-scale systems, L and T forming the “macroscale” and D and
τD defining the other, dominating, “microscale”.

The two-scale approximation provides heuristic support for local turbulence theory,
a form of words intended to signify that the effect of the turbulent eddies on the
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mean flow, at point x and time t, depends only on the properties of the mean motion
at the same (x, t). The dominant microscales exist in an environment controlled by
the macroscale fields U, B and C. The statistical properties of the turbulence on
this scale, together with the values at (x, t) of averages such as (4.40a–c), depend
only on U, B, C and their gradients, at the same values (x, t).

Although the two-scale approximation confers a modicum of respectability on the
idea of a local average and on the concept of local turbulence, the question of
whether naturally-occurring turbulence is well described by the approximation is
an entirely separate matter. Another serious issue is also apparent: how is the local
turbulence kept supplied with energy to offset its dissipative losses?

Consider classical turbulence, by which we mean turbulence of shear flows in a non-
rotating non-magnetic systems. Turbulence arises when the macroscale Reynolds
number, Re = UL/ν is sufficiently great, where U and L are characteristic of the
shear flow. Although all the energy is injected at large scales L, much of it is dis-
sipated by the small-scale turbulence. This happens through an inertial cascade of
energy created by the U · ∇U term in (4.35a). This progressively transfers energy
from the large scale shear to the turbulent eddies, the latter becoming increasingly
isotropic as their size diminishes until their motion resembles the Brownian motion
of molecules that diffuse momentum isotropically. Let us suppose that these are the
dominant microscales. Then, if molecular diffusion is represented by ν ΔU, what
can be more natural than to represent the action of the small isotropic eddies on the
mean motion by νT ΔU? This Boussinesq-Reynolds ansatz (BRA) originated in the
nineteenth century and is still alive today; see, for example, Frisch (1995). It is the
oldest and simplest way of specifying M

u
. The diffusion of U is controlled by the

sum, νS = ν + νT, of the molecular viscosity and a “turbulent viscosity”, νT. This
enhancement in the effective viscosity is the physical expression of the energy that
cascaded to the turbulent scales and was dissipated there.

One can take the BRA further. According to molecular transport theory, ν ≈ 1
3
u

in a dilute gas, where u is the root-mean-square molecular velocity and l is the
mean-free-path between molecular collisions. Similarly, we may introduce a root-
mean-square turbulent velocity u = (|u|2)1/2 and a typical scale  for the eddies. If
the turbulent Reynolds number, Re� = u/ν, is large, the diffusion of large scale
momentum by the turbulent eddies is a dynamic process, negligibly affected by
viscous forces, so that νT is independent of ν. On dimensional grounds, νT ∼ u
is the only possibility, although it is difficult to make this rough estimative more
quantitative. Because Re 
 1, it follows that νT 
 ν, so that νS ≈ νT.

The replacement of M
u

by νT ΔU is (for constant νT) effectively the same as ap-
proximating R by −νT∇U. More precisely,

Rij = 1
3
Rkkδij − 2νTSij , (4.41)
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where S is the rate of strain tensor, defined in (1.27f), we recall:

Sij = 1
2
(∂iUj + ∂jUi) . (4.42)

The form (4.41) has the required symmetry, Rji = Rij . The first term on the right-
hand side is required because Skk = 0 by (4.35d) but Rkk = |u|2 is nonzero. This
term is, however, ineffective because its divergence is a gradient that can be ab-
sorbed into ∇P ; it is usually omitted without comment. In the simplest form of the
theory, νT is a constant but more sophisticated choices have been made. For exam-
ple, Smagorinsky (1963) specified νT(x, t) as a function of the Sij at x and t, the
idea being that the larger the mean shear the stronger the local turbulence and the
greater the νT.

When applied to magnetoconvection, the simplest generalisation of the BRA is

M
u

= ∇ · (νT∇U) , M
b
= −∇ × (ηT∇ × B) , M

c
= ∇ · (κT∇C) ,

(4.43a,b,c)
where νT, ηT and κT are turbulent diffusivities. When these are constant, (4.38a–d)
have the same form as (4.35a–d), but with ν, η and κ replaced by νS = ν + νT, etc.
Although magnetic field and heat are diffused by the small-scale eddies in somewhat
different ways from momentum, it is commonly assumed (as for νT) that ηT ∼ v
and κT ∼ v. Because κ is so small (of much the same size as ν), the turbulent
diffusion of heat in the core dominates its molecular diffusion: κS ≈ κT.

The generalised BRA (4.43a–c) raises a number of issues. One salient difference
between the inertial cascades of classical turbulence theory and of convectively-
driven turbulence should be stressed. The former envisages an inertial range of
eddy sizes in which eddies of any one scale receive energy from the larger eddies
and pass it on to the smaller eddies. In convectively-driven turbulence however, an
inertial range of this type cannot occur, since buoyancy injects energy on every scale.
Since buoyancy has a preferred direction, the local turbulence may be significantly
anisotropic with respect to the direction, eg, of gravity. It may therefore be necessary
to replace (4.43a–c) by

Mu = ∇ · (νT · ∇U) , Mb = ∇ · (ηT · ∇B) , M c = ∇ · (κT · ∇C) ,
(4.44a,b,c)

where νT, ηT and κT are tensor diffusivities, symmetric with respect to eg. Such
anisotropies have been introduced in descriptions of turbulent convection in stars;
see, for example, Rüdiger (1989). As we shall recognise in Section 4.8, turbulent
convection in the Earth’s core is strongly affected by Coriolis and Lorentz forces, so
that the turbulence and the tensor diffusivities are highly anisotropic, the directions
of Ω and B being preferred.

The physical basis of (4.43) and (4.44a–c) is the idea that the action of the turbulent
eddies on the macroscale fields is entirely diffusive. This, however, is not neces-
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sarily the case; there may also be “up-the-spectrum” processes or “back-scatteer”.
For instance, rotating, stratified flows generally lack mirror symmetry. As a result,
R contains a term proportional to U rather than to its gradient. This is called the
(anisotropic) kinetic α–effect; see Frisch (1995). This name is a reminder of the
α–effect in mean field electrodynamics (MFE). Not only does turbulence in an elec-
trically conducting fluid create a mean EMF, E = u × b proportional to the gradient
of B and represented by −ηT∇ × B in (4.43); as explained in Chapter 1, when the
flow is non-mirror symmetric, it also contains a term proportional to B rather than
to its gradient. In the simplest case, this EMF is simply αB, parallel to B. Through
this accident of notation, the phenomenon is called the α–effect.

When the turbulent magnetic Reynolds number, Rm� = u/η, is large, as is the
case in some astrophysical contexts, the α–effect and turbulent diffusion are very
important contributors to the total mean EMF, U×B+E . This is unlikely to be the
case in the Earth’s core. Because the fluid core generates the geomagnetic field, we
can be sure that the magnetic Reynolds number of the large scale motions,

Rm = UL/ηS , (4.45)

is not small, but neither is it very large; numerical models suggest that Rm ≈ 100.
Taking U ≈ 10−4 m s−1 and L ≈ 2×106 m as before, we see that Rm ≈ 100 implies
that ηS ≈ 2 m2 s−1. Taken literally, ηS ≈ 2 m2 s−1 and η ≈ 2 m2 s−1 (see above)
imply ηT ≈ 0. Given the uncertainties of geophysical estimation, one should not
make such a bold statement, but it seems probable that ηT is, at most, comparable
with η. Only when Rm� ≡ u/η 
 1 is ηT/η 
 1 and (even assuming that u is as
large as U which is unlikely) Rm� < 1 for all scales, , less than L/100 ≈ 2×104 m.

There is an observational clue also indicating that turbulent induction does not dom-
inate the electrodynamics of the core. The minimum time necessary for the polarity
of the dipole component of the geomagnetic field to reverse is of order of the longest
free decay time, τd = L2/π2ηS [see (4.2)]. This is reduced if ηT/η is increased but
interpretations of paleomagnetic data are consistent with τd = L2/π2η. It therefore
seems unlikely that the theory of core MHD would be seriously compromised by
setting ηT = α = 0 and more generally M

b
= 0.

Even if νT ≈ ηT ≈ 1 m2 s−1, the macroscale Ekman number E = νT/ΩL2 is only
about 4 × 10−9. The turbulent Ekman number ET = νT/Ω2 based on a length
scale  exceeds 1 only for  < 0.3 km. It seems that, even when enhanced by
the turbulence, viscous forces do not influence the macroscale motions significantly
(except in boundary layers). This suggests that (if numerical algorithms allowed it),
one could simplify core MHD by assuming that M

u
= 0. This step is, however,

questionable. According to (4.35a), there is, in addition to the inertial cascade from
U · ∇U, a magnetic cascade of kinetic energy created by B · ∇B and represented
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by −bb in (4.40a). This suggests that, in the isotropic case (4.43),

Rij = 1
3
Rkkδij − 2νT U Sij + 2νT BT ij, where Tij = 1

2
(∂i Bj + ∂j Bi) (4.46)

is a more appropriate BRA than (4.41). On the face of it, the magnetic cascade is
stronger for scales on which Ro = u/Ω is less than O(1). The last term in the
expression (4.46) for Rij recognises that mean motion gains kinetic energy from
the turbulent magnetic field at a rate approximated here by νB TJ · ∇ × U. [This
provides a motivation for including a corresponding term −νB T∇ × U in E ; see
Yoshizawa et al.(2003).]

4.8. THE TRADITIONAL APPROACH
TO TURBULENCE

4.8.1. A THREE-STEP PROGRAM

Evidently, a wide gulf exists between the physical basis of the BRA and its math-
ematical expression (4.43). Can it be bridged? A deductive theory would require
precise knowledge of u, b and c. A three-step program has been attempted. In
step 1, the averaged equations (4.38a–d) are subtracted from (4.35a–d) to obtain
equations governing the turbulent variables:

(Dt − ν Δ)u + 2Ω × u = −∇p + B · ∇b + cg + Lu + mu , (4.47a)
(Dt − η Δ)b = B · ∇u + Lb + mb , (4.47b)
(Dt − κ Δ)c = −u · ∇C + mc , (4.47c)
∇ · u = 0, ∇ · b = 0 , (4.47d)

where Dt = ∂t + U · ∇ and

Lu = b · ∇B − u · ∇U , Lb = b · ∇U − u · ∇B , (4.47e)
mu = ∇ · (bb − uu) − Mu, mb = ∇ × (u × b) − Mb , (4.47f)
mc = −∇ · (uc) + M c . (4.47g)

The overbars on U etc have been omitted, but will be restored later if clarity demands
it. In principle, these equations (and appropriate boundary conditions) determine
u, b and c as functionals of U, B and C. Step 2 consists in determining these
functionals, a truly daunting task. In step 3, the functionals are inserted into (4.40a–
c) so that Mu, Mb and M c can be evaluated, also as functionals of U, B and C.
These might, but most likely would not, be of the form (4.44a–c).
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An equally challenging alternative to steps 2 and 3 is to multiply the ith–compon-
ent of (4.47a) by uj and add the result to what is obtained by multiplying the jth–
component of (4.47a) by ui; after averaging, the evolution equation for Rij is ob-
tained. Similar operations with (4.47b) and (4.47c) generate analogous equations
governing bb, ub and uc. These evolution equations involve triple moments, such
as uuu, ubb, etc. One is forced again either to make ad hoc choices for these ten-
sors or to derive evolution equations to govern them, and these will involve quartic
moments, and so on. This is the celebrated closure problem of turbulence theory.
No matter how the hierarchy of equations is closed, the equations governing uu,
bb, ub and uc must be solved. The required Mu, Mb and M c are then obtained
by differentiation. We shall not adopt this alternative procedure here. For further
details, see for example Yoshizawa et al. (2003).

Returning to the direct solution of (4.47a–d), one must recognise that step 2 is so
challenging that approximation is inevitable. One possibility is to linearise (4.47a–
d) by setting

mu = 0 , mb = 0 , mc = 0 . (4.48a,b,c)

This is often called first order smoothing but can seldom be justified in the contexts
in which it is applied. Nevertheless, linear equations are tractable and contain all the
essential physics apart from the nonlinear cascades. They are therefore well worth
investigating, as we do in the following subsections.

4.8.2. LINEARISED MODES OF A SIMPLE MODEL

We consider a simple magnetoconvective system consisting of a fluid “box”,

0 ≤ x ≤ 0 , 0 ≤ y ≤ 0 , 0 ≤ z ≤ 0 , (4.49a,b,c)

through which a uniform field passes; we assume the orientations

g = −g ez, β = −∇C = −β ez, B = B ey, U = 0 . (4.50a,b,c,d)

This defines the unperturbed state. This model and variants have frequently been
studied; see below.

Boundary conditions, such as periodicity, must be satisfied by u, b and c, so it
is convenient to expand these in Fourier series. The available wavenumbers are
discrete

kx = (2π/0) nx , ky = (2π/0) ny , kz = (2π/0) nz , (4.51a,b,c)

where nx, ny and nz are integers. The discreteness of k is an unnecessary compli-
cation in what follows, and we lose nothing essential by supposing that the Fourier
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representations are continuous functions of k. It will become important however to
recognise that the finite size of the box imposes a lower bound k0 on the available
wavenumbers

kx ≥ k0 , ky ≥ k0 , kz ≥ k0 , (4.52a,b,c)

so that k ≥
√

3k0, where k = (k2
x + k2

y + k2
z)

1/2 is the total wavenumber. We
shall sometimes replace kx etc, by 1/�x etc. We shall take k0 ≈ 10−6 m−1, so that
�0 = 1/k0 is typical of the physical dimensions of the fluid core.

At first we ignore the inertial and viscous terms in (4.47a). The linearised equations
(4.47a–d) are then

2Ω × u = −∇p + B · ∇b + cg , (4.53a)
(∂t − η Δ)b = B · ∇u , (4.53b)
(∂t − κ Δ)c = −u · ∇C , (4.53c)
∇ · u = 0 , ∇ · b = 0 . (4.53d)

A solution can be found in the form of a tessalated pattern of convective cells. For
example, we may write

c = c̃(t) sin x′ sin y′ sin z′ , (4.54a)

where

x′ = kxx + δx, y′ = kyy + δy , z′ = kzz + δz , (4.54b,c,d)

and δx, δy and δz are arbitrary phases. In linear theory, c̃ is proportional to exp(γt)
and ∂t is equivalent to multiplication by γ; −Δ is equivalent to k2.

On substituting (4.54a) into (4.53a), (4.53b) and (4.53d), cumbersome expressions
for u and b emerge. To simplify these, we follow Braginsky & Meytlis (1990) by
introducing the abbreviations

γη = ηk2 , γκ = κk2 , Ω∗ = 2Ωkz/k , γ∗ = γBk2
y/k

2 , (4.55a,b,c,d)

where γB = |B|2/η ≈ 2 × 10−4 s−1 and is scale-independent; Ω∗ and γ∗ are also
independent of the absolute scale � but depend on the relative scales, �z/� and �y/�,
of the assumed periodicities. The relation

b = B∂yu/(γ + γη) , (4.56)

obtained from (4.53b), can be used to eliminate b from (4.53a) in favour of u. On
removing p by taking the curl of the resulting equation, and using (4.53c) also, one
obtains the dispersion relationship that determines the growth rate γ:

(γ + γκ)[Ω
2
∗(γ + γη)

2 + γ2
∗γ

2
η ] = ω2

α(γ + γη)γ∗γη(k
2 − k2

z)/k
2 . (4.57)

This implies that

0 ≤ γ + γκ ≤ ω2
α

4Ω

k2 − k2
z

kkz

. (4.58)
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4.8.3. THE MOST EASILY EXCITED MODE

It is of interest to determine the maximum growth rate, γmax, and the general be-
haviour of γ as a function of k. The fact that q = κ/η is so small means that the
system is not prone to overstability, i.e. the interesting root of the cubic (4.57) is
real. If we ignored (4.52a–c), we would find that the maximising k is zero, and the
corresponding γ is infinite. By imposing (4.52a–c), we improve physical realism,
make γmax finite and, in a small way, add geometry-dependence to the solutions.

It is convenient to maximise γ first over ky. The equation ∂γ/∂γ∗ = 0 gives

k2
y =

ω2
α

2|B|2
(k2 − k2

z)

k2
+

2Ω

|B|2 (η − κ)kkz , (4.59a)

γ =
ω2

α

4Ω

(k2 − k2
z)

kkz

− κk2 . (4.59b)

This is “optimal” according to (4.58), but it is not the only relevant case. The El-
sasser number (which is scale independent),

Λ = |B|2 / Ω η , (= γB/Ω) (4.60)

is moderately large in the core: Λ ≈ 50, if we take B ≈ 0.1 m s−1 in Alfvén
units, corresponding to a field of 0.01 T (or 100 G). It is therefore possible that
the ky given by (4.59a) lies outside the admissible range (4.52a–c). If (4.59a) gives
ky < k0 or kx ≡ (k2 − k2

z − k2
y)

1/2 < k0, the optimal case must be abandoned and,
by (4.58), γ is reduced. The maximum growth rate is then obtained from (4.57) after
the substitutions

ky = k0 , and γ∗ = |B|2 k2
0/2 γη , (4.61a,b)

have been made. Calling this “the non-optimal case”, we show in Figure 4.6 a
dashed curve, labelled “SO” (standing for “switchover”). This marks where the
optimal case (above and to the right of the dashed curve) switches to or from the
non-optimal case. No admissible region arises in which (4.59a) implies that kx < k0.

Figure 4.6 is a regime diagram that summarises the properties of the dispersion
relationship (4.57) or, more precisely (since a 2D plot cannot show the dependence
of γ on all three variables kx, ky and kz), it displays information about γ(k, kz) for
the maximising ky. This is shown in a log-log plot of k/k∗ versus kz/k∗, where k∗
is defined by

k2
∗ = ω2

α/2Ωκ (4.62)

and is approximately 3.7 × 10−3 m−1 so that �∗ ≈ 1 km. The geometric constraints
(4.52a–c) exclude everything outside the “wedge” defined by kz = k0 and kz =
(k2 − 2 k2

0)
1/2.
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Figure 4.6 - Regime diagram for the linear dispersion relationship. This log-log plot
displays information about the growth rate γ, maximised over ky. The abscissa is
k/k∗; the ordinate is kz/k

∗, where k∗ is defined by (4.62). Solutions exist only in the
“wedge” shown; other wavenumbers are inaccessible. The most unstable mode is
marked with an “×”. For the convective C-modes, γ > 0; for the damped D-modes,
γ < 0. The “triangle” with a bold perimeter indicates modes that are accessible in
large eddy simulations. For further explanation, see text.

Figure 4.6 has implications for LES. In numerical work, the integers in (4.51a–c) are
bounded above by NF (say). For continuous k, this corresponds to kF in (4.33a),
and the SGS are defined by

kx > kF , ky > kF , or kz > kF . (4.63a,b,c)

The “triangle” highlighted by thick lines and marked “LES” contains only the geo-
metrically accessible modes that are also numerically accessible according to (4.33a).

The curve labelled “γ = 0” defines the neutral modes, separating the unstable solu-
tions γ > 0 labelled “C–modes” (standing for “convective modes”) from the stable
solutions γ < 0 labelled “D–modes” (damped modes). The curve labelled “MAC”
will be discussed later. Because k∗ � k0, the overall maximum growth rate, γmax,
belongs to one of the SGS, namely (k, kz, ky) = (kmax, kz,max, ky,max) where

(kmax, kz,max, ky,max) ≈ (k∗
2/4 k0, k0,

1
2
k∗/Λ

1/2) , γmax ≈ κk4
∗/16 k2

0 .
(4.64a,b)
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This maximising wave vector is marked with a cross in Figure 4.6. The growth rate
is large: γmax ≈ 6 × 10−4 s−1, corresponding to a time of less than a day. This is
because the convection is highly supercritical. We may restate this in terms of the
(modified) Rayleigh number:

R̃a = ω2
α L2/2 Ω κ = (k∗L)2 . (4.65)

This nondimensional measure of the density stratification is often used in convection
studies. Here it is about 108, even though β is so tiny. According to (4.64a,b), the
maximising wavenumbers are kx ≈ k ≈ 3.4 m−1, ky ≈ 4.3 × 10−3 m−1, kz ≈
10−6 m−1, corresponding to

�x ≈ 0.3 m , �y ≈ 1/4 km , �z ≈ 1000 km . (4.66a,b,c)

These large disparities in the dimensions of the convection cells, and particularly
their thinness in the x–direction, led Braginsky & Meytlis (1990) to call them “plate-
like”. This feature is not totally unexpected. A nonrotating, non-magnetic system
extracts buoyant energy from unit horizontal area most effectively by up-and-down
motions in as close a proximity as possible, i.e. having the smallest possible hori-
zontal scales �x and �y. In fact �x = �y = 0 is preferred if viscosity is ignored! In the
present case, the rotational and magnetic constraints suppress modes of small �y, but
they leave the x–direction relatively unfettered. Cells of small �x “stack plates” close
together and draw on the buoyancy source efficiently. See also St. Pierre (1996) and
Siso-Nadal & Davidson (2004).

The smallness of �x reopens the question of the roles of inertia and viscosity, a topic
we examine in the next subsection.

4.8.4. MORE COMPLICATED
AND LESS COMPLICATED MODELS

To explore the wisdom of excluding the inertial and viscous forces from (4.53a),
we may restore (∂t − ν Δ)u to its left-hand side. The dispersion relation replacing
(4.57) becomes

(γ + γκ)[Ω
2
∗(γ + γη)

2 + {γ∗γη + (γ + γν)(γ + γη)}2]

= ω2
α (γ + γη) {γ∗γη + (γ + γν)(γ + γη)}(k2 − k2

z)/k
2 . (4.67)

Maximisation of γ over ky again gives (4.59b) but this optimal case applies over a
smaller domain than in Section 4.8.3. The maximising ky is now given by

k2
y =

[
ω2

α

2|B|2
(k2 − k2

z)

k2
+

2Ω

|B|2 (η − κ)kkz

]
(1 − μ2F ) , (4.68a)
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where

F =
(k2 − k2

z)

k2
z

+
k3

kzk2
∗

(ν

κ
− 1

)
, μ =

ωα

2Ω
. (4.68b,c)

The switchover between the optimal and non-optimal cases now occurs near the
curve γ = 0 in Figure 4.6. The inertial force is responsible for this; it reduces the
growth rate at the vertex, (k, kz) = (

√
3k0, k0), of the wedge in Figure 4.6 by about

80%, but the location and magnitude of γmax are little changed.

One of the enduring themes of geodynamo theory is that field generation is mainly
the responsibility of finite amplitude MAC waves (see Section 3.3.4 and Braginsky,
1964b, 1967). The acronym “MAC” is conspicuous for what it leaves out: the
inertial force, ∂tU + U · ∇U, in (4.35a). The evolution of the waves is determined
by the time derivatives in (4.35b) and (4.35c) alone; inertia is unimportant. In the
present plane layer model, for which only the real root of (4.57) is relevant, the
MAC “waves” do not propagate. In the curved geometry of the Earth however, they
move longitudinally and have been associated with the observed westward drift of
the geomagnetic field.

Small amplitude MAC waves are governed by (4.47a–d); they also regenerate field
but, if the magnetic Reynolds number Rm∗

� = γ/ηk2 is small, electromagnetic in-
duction is insignificant and ∂tb in (4.53a) is negligible compared with γηb. The line
on which Rm∗

� = 1 is shown in Figure 4.6 and is labelled “MAC”. As it falls in
the LES triangle, it appears that field regeneration by the SGS is relatively unimpor-
tant, confirming the suggestion of Section 4.7.4 that the turbulent α–effect and the
turbulent enhancement of the magnetic diffusivity can be safely ignored.

For the SGS of small Rm∗
� , the neglect of ∂tb transforms (4.47b) into the low con-

ductivity induction equation which is a consequence of Ohm’s law in the form

η j = −∇φ + u × B , (4.69)

where φ is the (scaled) electric potential. This low conductivity approximation
is commonly used in laboratory MHD. The last term in (4.69) creates a Lorentz
force, j × B, of −u⊥/τB , where u⊥ is the component of u perpendicular to B and
τB = 1/γB is variously called the magnetic damping time and the Joule damping
time. In brief, motions perpendicular to B, unless maintained, are damped out in a
characteristic time of order τB that, like the Elsasser number, is scale-independent;
see Davidson (2001).

The laboratory approximation (4.69) is good for the SGS of small Rm∗
� but the

rotation of the core adds a further anisotropic force, 2Ω × u, that opposes motions
perpendicular to Ω and also “releases the magnetic constraint” for motions parallel
to B. The only component of u that is strongly suppressed is perpendicular to both Ω
and B, i.e. parallel to ex in the present model, and parallel to Ω×B for orientations
more general than (4.50a–d).
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Braginsky & Meytlis (1990) developed the theory of the SGS of small Rm∗
� . In place

of (4.57) they obtained

(γ + γκ)(Ω
2
∗ + γ2

∗) = ω2
αγ∗(k

2 − k2
z)/k

2 . (4.70)

Maximisation over ky again gives (4.59b), the maximising ky now being given by

Ω∗ = γ∗ , i.e. k2
y = k kz/Λ . (4.71a,b)

Because ky/k0 ≤
√

3 and kz/k0 ≤ 1, (4.71b) shows that ky/k0 ≤ 31/4/Λ1/2. Since
Λ >

√
3, it follows that (4.59b) and (4.71b) hold for all admissible k, i.e. throughout

the wedge of Figure 4.6. The most easily excited mode is given by (4.54a) and

ux = ũ(kz cos x′ sin y′ cos z′ + ky sin x′ cos y′ cos z′)/k, (4.72a)
uy = −ũ cos x′ sin y′ cos z′, uz = ũ sin x′ sin y′ sin z′, (4.72b)

bx = b̃(kz cos x′ cos y′ cos z′ − ky sin x′ sin y′ cos z′)/k, (4.72c)

by = −b̃ cos x′ cos y′ cos z′, bz = b̃ sin x′ cos y′ sin z′, (4.72d)

where b̃ = (Bky/γη)ũ; also ũ = (g/2γ∗)c̃ which expresses the equality of the rate
of Joule heating and the rate of working of the buoyancy force. The expressions
(4.72a–d) have been simplified by using the thin plate approximation, kx ≈ k.

4.8.5. FINITE AMPLITUDES

Growth rates as large as γmax in (4.64a,b) are misleading consequences of (4.48a–
c). In reality, small u, b and c grow in amplitude only until mu, mb and mc are
large enough to establish equilibrium, or more precisely (since large values of R̃a
imply turbulent convection) until statistical equilibrium is established; the modes
(4.64a,b) are then statistically steady but their amplitudes should be large because
they are the most easily excited according to linear theory. Also, Figure 4.6 has
a fresh interpretation: the nonlinearities restore the inertial and magnetic cascades,
and these maintain motions even in the domain labelled “D-modes”, which should
now be renamed “driven-modes”.

A method often used in MFE and mean field MHD to compute R, E and I is based
on the idea that the turbulence is “nearly” homogeneous and isotropic, so that ∇U,
∇B and ∇C are small perturbations of a turbulent flow all of whose statistical
properties are known; see, for example Krause & Rädler (1980) and Rüdiger (1989).
This is a poor description of core turbulence. A more persuasive scenario is that of
Braginsky & Meytlis (1990). They argued that, on the background of the basic
unstable stratification, perturbations consisting of independent plate-like “parcels”,
resembling the cells of the linear theory but not part of the tessalated pattern (4.54a),
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grow exponentially. When the amplitude of the parcels becomes large enough for
strongly nonlinear effects to come into play, the parcel is destroyed and subsides into
the mean state, i.e. it is “smoothed out”. In its place a new parcel is born, grows and
dies, in a never ending sequence. The system is filled by these independent parcels,
all in different stages of development.

In this picture, a parcel is destroyed before it can overturn completely; its lifetime
is of order τ = �z/uz = 1/kzũ. Thermal diffusion has little time to act in these
rapid processes. In the statistically-steady state, the source mc (∼ kzũc̃) in (4.47c)
is balanced by u · ∇C (∼ βũ) so that

c̃ ∼ β

kz

, ũ ∼ gc̃

2γ∗
∼ ω2

αk

4 Ω k2
z

. (4.73a,b)

It follows that τ ∼ 1/γ, where γ = ω2
αk/4Ωkz is the small–κ form of the growth

rate (4.59b) of the linear theory.

When Rm� 	 1, the Braginsky-Meytlis scenario can be modelled by (4.72a–d),
which show, after some reductions, that mu contains the contribution mu

1 , where

mu
1 = 1

4
kzey (̃b

2 − ũ2) sin 2x′. (4.74)

A little consideration of (4.47a) shows that neither the Coriolis nor the Lorentz force
can balance mu

1 . The viscous force can do so only through a part of uy that is
proportional to 1/γν . This is large unless

b̃ = ũ , i.e. Ω∗ = γ∗ = γη . (4.75a,b)

Because Ro = u k/Ω increases with k, the energy in mode k is increasingly kinetic
(see Section 4.7.2). It is now seen from (4.75a,b) that there is equipartition for the
SGS of small Rm� (Braginsky & Meytlis, 1990).

The result (4.75a,b) also suggests that the inertial and magnetic cascades for the
SGS of small Rm� cancel each other out. This is consistent with the argument given
in Appendix C of Braginsky & Roberts (1990). The rate of ohmic dissipation by the
SGS is given by Qη,t = η j2 = B · j × u + j · e. After ignoring inertial and viscous
forces, we deduce from (4.47a) that B · j × u = cu · g − ∇ · (pu), so that

Qη,t = cu · g − ∇ · (pu) + j · e . (4.76)

Divergences such as ∇ · (pu) vanish when the overbar is interpreted as a local
average (Section 4.7.3). If Rm� 	 1, (4.69) holds and j · e = −∇ · (φj); this also
vanishes on averaging. Equation (4.76) then states that these modes draw the energy
they need to pay their ohmic expenses from, and only from, buoyancy; cascade is
not involved. If Rm� = O(1) however, j · e = −∇ · (e × b) + 1

2
∂tb2, which does
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not vanish. The lost ohmic energy is partially derived from a cascade from other
modes.

Because of the enormous disparity in the relative dimensions of the parcels, their dif-
fusion of large-scale momentum, field and energy is extremely anisotropic. Clearly
(4.44a–c) is far more likely to be successful than (4.43) but, when diagonalised, the
tensor diffusivities νT, ηT and κT have much smaller components in the direction of
Ω × B than in the ΩB–plane. Estimates of the relative magnitudes of their compo-
nent can be derived from the relative dimensions of the parcels, which follow from
(4.75a,b):

ky

k
=

ηk

B
,

kz

k
=

ηk2

2Ω
, so that

�y

�z

=
kB

2Ω
. (4.77a,b,c)

Nothing has singled out one particular band of SGS as being dominant, in the sense
of the two-scale approximation of Section 4.7.4. Braginsky & Meytlis proposed a
heuristic principle according to which the dominant parcels have an approximately
square yz–cross–section. Then, by (4.77a–c),

kD =
2Ω

B
, so that kDy = kDz =

4 Ω2 η

B3
, (4.78a,b)

corresponding to �Dx ≈ 0.7 km and �Dy = �Dz ≈ 25 km. Braginsky & Meytlis
estimated that, for the all important κT zz determining the turbulent codensity flux,

κT zz ∼ uDz�Dz ∼
ũ

kDz

∼ ω2
α B8

128 Ω6 η3
. (4.79)

This sensitive dependence on B is a consequence of the B–dependence of kD. For
the values we have used earlier, κT zz ≈ 0.8 m2 s−1.

The Braginsky–Meytlis scenario is similar to one used successfully in the theory of
stellar structure, mixing length theory (MLT); see Chapter 5 of Hansen & Kawaler
(1994) or Chapter 14 of Cox (1968), and Section 5.6.1. Loper et al. (2003) envisage
core processes that are even closer to MLT than in the Braginsky–Meytlis picture;
see also Chulliat et al. (2005).

4.8.6. AN ALTERNATIVE APPLICATION: DNS

Before leaving the present model, we should point out that it can be re-invented
and put to a different use. The “box” (4.49a–c) was presented earlier as an ultra-
simplistic model of the entire core. Obvious shortcomings such as (4.50a–d) were
ignored. An alternative is to consider a similar, but much smaller, “box” that rep-
resents a small volume v of the core. It is reasonable to suppose that, even though
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their orientations may differ from (4.50a–d), g, β, B, and U, are nearly uniform
across the box. Although U would generally be nonzero, the reference frame can be
chosen to move with the box (Braginsky & Meytlis, 1990).

Many models of this general type have been studied. Several of these have been “di-
rect numerical simulations” (DNS) in which the full nonlinear equations have been
integrated. See for example Matsushima et al. (1999), Matsushima (2001, 2004) and
Buffett (2003) and Setion 5.6. Averaging over the box can provide estimates of the
diffusivity tensors as functions of position x; these may be regarded as local space
averages at x. One should not forget however, that the wavenumbers accessible to
a small box do not include much of the area depicted in Figure 4.6, and in partic-
ular may not include significant wavenumbers such as (4.64a,b), corresponding to
buoyant parcels some of whose dimensions exceed those of the box.

4.9. THE ENGINEERING APPROACH
TO TURBULENCE

4.9.1. FILTERING

We now describe an approach that differs substantially from the traditional one de-
scribed above, and is specifically oriented towards numerical work. Let us focus
on C(x, t). This might be the highly resolved codensity obtained by DNS and used
to test different methods of SGS modelling; see Meneveau & Katz (2000), Buffett
(2003) and Chen & Glatzmaier (2005). Alternatively, it might be the unavailable,
“infinitely well resolved”, codensity that actually exists in the core. This will be
our choice. As we have already mentioned, an LES that employs spectral methods
excludes all the spectral components of the SGS part of this C. These are “filtered
out” completely; see (4.33a) and (4.63a–c). We seek to modify the LES so as to
minimise this loss.

Considering as before k to be a continuous variable, we focus on the Fourier trans-
form C̆(k, t) of C(x, t). The filtering just described consists of the Draconian elim-
ination of all wavenumbers greater than kF . Equivalently, C̆(k, t) has been replaced
by ĞF (k)C̆(k, t), where ĞF (k) is a filter that vanishes for k > kF . A product of
Fourier transforms corresponds in physical space to a convolution:

C(x, t) =

∫
GF (x′) C(x − x′, t) dx′ . (4.80)

When grid point methods are used to simulate core MHD, the operation (4.80) corre-
sponds to a different filter. But in either case the filter has a finite “width”, Δ, which
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is the “range” over which the smoothing operation (4.80) acts in physical space; it
is conventionally defined by∫

GF (x) dx = 1 ,

∫
x2GF (x) dx = (1

2
Δ)2 , (4.81a,b)

the first of which is demanded of all filters.

Equation (4.80) gives the overbar operation a completely fresh interpretation, but it
should be particularly noticed that, with this interpretation, only the first of Reynolds
rules (4.36a) is valid. The application of (4.80) to (4.35a–d) generates filtered equa-
tions that have exactly the same form as (4.38a–d). These are usually written dif-
ferently; the decomposition (4.37a–d) is not made explicitly. Instead, (4.40a–c) is
written as

R = (UU − U U) − (BB − B B) , (4.82a)
E = U × B − U × B , I = UC − U C . (4.82b)

Also, different words are used, e.g. R is called “the sub-grid scale stress”, I is “the
SGS codensity flux”, etc.

The action of another filter, GΔ(x), on C is analogous to (4.80). It creates a doubly

filtered quantity, C̃, where

C̃(x, t) =

∫
GΔ(x′) C(x − x′, t) dx′ . (4.83)

The function GΔ(x) may be so small for |x| > Δ that the integral in (4.83) can be
taken over all space although, when x lies within a distance Δ of a boundary, the
integration limits require careful handling. There are a number of ways GΔ can be
selected. One popular choice is the Gaussian filter:

GΔ(x) = (6/π Δ2)3/2 exp(−6 |x|2/Δ2) . (4.84)

In what follows, the first filter, denoted by the overbar, is always the natural fil-
ter, GF (x), intrinsic to the LES. The doubly-filtered variables, Ũ, B̃ and C̃ satisfy
(4.38a–d) with R, E and I appropriately redefined, as suggested by (4.82a) and
(4.82b).

4.9.2. SIMILARITY AND DYNAMICAL SIMILARITY

The question now arises of how to approximate the unknown R, E and I. The
similarity method is based on the idea that the solution for the unresolved scales
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smaller than Δ has a similar structure to the solution for the resolved scales slightly
larger than Δ. In the case of the codensity, this leads to

I = AI(Ũ C − Ũ C̃) , (4.85)

where AI is a constant and C̃ etc denote the result of applying a second, coarser
filter to C etc, e.g. one of width 2Δ [so that 2Δ replaces Δ in (4.83)].

To make the approximation (4.85) seem plausible, observe that, if we substitute U
and C for U and C in (4.85), we would obtain (for AI = 1) the actual SGS codensity
flux, as evaluated on the coarser grid, i.e. ŨC − Ũ C̃. This is just as inaccessible as
UC−U C (= I) because it too involves contributions from the SGS smaller than Δ.
But when these contributions are small compared with the contributions from scales
between Δ and 2Δ, (4.85) should be a good approximation to I from the coarser
grid. Constants such as AI are often replaced by 1 in turbulence modelling, but
their inclusion adds flexibility, the possibility of compensating for the fact that the
estimate (4.85) ignores scales smaller than Δ. The application of (4.85) runs into
difficulties near boundaries, which require special treatment and increased numerical
resolution.

The approximation (4.85), and its companions

R = Au
R(ŨU−Ũ Ũ)−Ab

R(B̃B−B̃ B̃) , E = AE( ˜U × B−Ũ×B̃) , (4.86a,b)

constitute the similarity approximation. For given values of AI , Au
R, Ab

R and AE , it
is easily applied since the required fields U, B and C are the LES fields available
at each time step. If spectral methods are employed, the computational overhead is
about 80%, but the effective kF is at least doubled (Glatzmaier, private communica-
tion).

Instead of assigning the constants Au
R, Ab

R, AE and AI in an ad hoc way, they can be
computed by a method called dynamical similarity; see Im et al. (1997). One way
of implementing this is to apply a third filter even coarser than the other two, e.g.
one of width 4Δ; its operation on C is denoted by Ĉ. In exactly the same way as
expression (4.85) is equivalent to the statement

UC − U C ≈ AI(Ũ C − Ũ C̃) , (4.87)

we have

ŨC − Ũ C̃ ≈ AI(
̂̃
U C̃ −

̂̃
U

̂̃
C) . (4.88)

The left-hand sides of these equations involve the SGS and are unknown, but we
may use Germano’s identity,

(ŨC − Ũ C̃) − (ŨC − Ũ C) = Ũ C − Ũ C̃ , (4.89)
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to obtain an equation for AI , every coefficient in which can be computed:

AI [(
̂̃
U C̃ −

̂̃
U

̂̃
C) − (

˜̃
U C −

˜̃
U C̃)] = Ũ C − Ũ C̃ . (4.90)

Equation (4.90) is too much good news. We sought an equation that would deter-
mine AI and have obtained instead a myriad of equations, one for each grid point
and for each vector component. These will give different, though hopefully not very
different, values for AI . One recourse is to apply (4.90) in some average sense, e.g.
by taking the scalar product of (4.90) with ∇C and summing over the grid; see
Chen & Glatzmaier (2005). One might also consider employing all of (4.90), by us-
ing them to eliminate AI from (4.85) on a point-by-point component-by-component
basis.

Similar techniques can be applied to R and E too.

4.9.3. RELATED METHODS

We have focussed on two possible methods, similarity and dynamic similarity, but
there are others of a similar nature, e.g. the gradient model, the dynamic Smagorin-
sky model, and various “mixed models”. Meneveau & Katz (2000) review these and
confront them with the results of DNS and laboratory experiments. Buffett (2003)
does likewise, his test model being close to that of Section 4.8.6.

Another method that has received much attention is the Navier-Stokes-alpha model,
where α is a length, best chosen to be about 2Δ (this length has nothing to do with
either the α of Section 4.7.1 or the α of Section 4.7.4). The filtered and unfiltered
variables are related by

C = (1 − α2 Δ) C, (4.91)

which, in an infinite domain, is equivalent to the action of the filter

Gα(x) =
1

4πα2|x| exp

(
−|x|

α

)
. (4.92)

A full explanation of this method is beyond the scope of this review. Suffice it to say
here that it generates equations not unlike (4.38a–d) but ones that are closed and that
preserve integral properties of (4.35a–d); see Holm (2002). It is most easily applied
when the Boussinesq approximation is used or when the fluid is incompressible. See
also Jones & Roberts (2005).
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4.10. WHERE ARE WE NOW, AND THE FUTURE

4.10.1. THE GEODYNAMO

Our knowledge of the geomagnetic field comes from a number of distinct sources:

– Paleomagnetic measurements. These give the long-time behaviour; showing
that the field is maintained on times very much longer than τη and give infor-
mation about reversals, excursions, and the long-term secular variation. For
example, in analyses of paleomagnetic data, Love (2000a) finds an inverse cor-
relation between angular secular variation and field strength and Love (2000b)
confirms the statistical significance of the paths taken by the virtual geomag-
netic pole (VGP) during reversals having preferred locations.

– Surface observations. These are available for about the past 400 years. Early
measurements giving global coverage were largely made from ships. More
recently a network of land-based observatories has provided good quality data.

– Satellite observations. The high quality data from MAGSAT (1979-1980) is
now being complemented by ØRSTED allowing detailed models of the field
and the secular variation over the past 20 years, see for example Hulot et
al. (2002) and Jackson (2003).

In addition, there are other sources of information relevant to geodynamo simula-
tions:

– Seismological measurements. In addition to giving vital information on the
structure and composition of the core, recent work has used the anisotropy of
the inner core to determine its rotation rate, see for example Tromp (2001).

There are two clear distinct aims in geodynamo modelling:

(i) to understand the key physical processes of convection-driven hydrodynamic
dynamos in parameter regimes characteristic of the Earth, and

(ii) to try to explain specific features of the observed geomagnetic field.

An example of point (i) above is to demonstrate the maintenance of a magnetic field
of strength comparable with that of the Earth over times long compared with τη. An
example of point (ii) is to explain the observed variation in the reversal frequency.
We can expect that simpler models such as the zero-order models to be adequate
for point (i) while features specific to the Earth such as its heterogeneous CMB heat
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flow and its thermal history resulting in its inner-core growth to be necessary for
point (ii). Ultimately, we may hope to learn new facts about the interior of the Earth
by matching the results of sophisticated modelling to observations.

Numerical simulations give reasonable results for the morphology and strength of
the field at the CMB, and the models are also capable of giving reversals and excur-
sions which can be compared with palaeomagnetic observations. They also predict
differential rotation between the inner core and the mantle. Given the parameter val-
ues we are able to use, particularly for E and q, the success of our models is better
than we might expect. Jones (2000) comments “The parameter regime in which the
current generation of numerical models can be run is very far from the regime of
geophysical parameter values; so far, indeed, that the strong similarity between the
model outputs and the geodynamo is quite surprising.”

We can expect progress in a number of directions in the coming years. Increas-
ing computing power and improved numerical methods such as the inclusion of
subgrid-scale models, discussed in this chapter, should benefit all classes of mod-
els. Improved data and its analysis will identify generic and specific features of the
Earth’s field requiring explanation, motivating further developments away from the
zero-order model.

4.10.2. A CRITICAL SUMMARY OF TURBULENCE

Section 4.8 has shone some light onto the physical nature of the SGS. Their in-
effectiveness in field generation has been exposed; the structure of the turbulent
eddies has been clarified. This has led to a substantial insight: the turbulent eddies
are highly anisotropic and consequently tensor forms (4.44a–c) of the Boussinesq-
Reynolds ansatz are much more realistic than the original scalar forms (4.43). Nev-
ertheless, the difficulties in completing the three-step program have not been prop-
erly overcome. The program required that u, b and c be derived as functionals of U,
B and C for general U, B and C. This objective has not been reached, and it is hard
to see how numerical computation can help. Consequently, a different gulf exists,
one that separates (4.44a–c) from its physical basis. Order of magnitude estimates
such as (4.79) are suggestive but not completely convincing.

Although the idea of using turbulent transport coefficients still lacks proper theo-
retical backing, it has some physical content and is therefore not devoid of merit.
But there is a basic objection to the 3-step program: the turbulence has been stud-
ied using molecular transport coefficients. This means that a conceptually troubling
discontinuity exists at the GS/SGS frontier. To remove this by adopting turbulent
diffusivities when studying the turbulence would conflict with the requirement that
only molecular diffusion acts at sufficiently large k. One might consider introduc-
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ing a sliding scale on which the turbulent coefficients gradually give way to molec-
ular coefficients as k increases, in a manner similar to that envisaged long ago by
Heisenberg (1945); see also Chandrasekhar (1955). This would introduce further
complications into an analysis that is already too difficult.

One virtue of the simple Boussinesq-Reynolds ansatz (4.43) is that it is the easiest
of all techniques to apply. It has, however, not been endorsed by DNS and labora-
tory experiments; see Meneveau & Katz (2000) and Buffett (2003). Difficulties are
also faced in selecting numerical values for the turbulent diffusivities. It is less than
satisfactory to choose the values that secure the best agreement between the numer-
ical results and the phenomena they are meant to describe! The same applies to the
tensor diffusivities for use in (4.44a–c) and also, when hyperdiffusion is invoked, to
the coefficients quantifying that.

The generalised Boussinesq-Reynolds ansatz (4.43) is not easy to apply. The direc-
tion Ω×B of weak diffusion constantly varies with the direction of B; probably an
adaptive grid technique would be required to overcome the concomitant numerical
difficulties. This obstacle does not arise when B is zonally dominant; Donald &
Roberts (2004) explored this case and ominously discovered that the anisotropy of
κT strongly influenced their dynamo.

These difficulties do not bode well for the future of the traditional approach, but
criticisms can be levelled at the methods described in Section 4.9 too. While it is
true that the similarity method has a common sense basis, namely the continuity of
physical behaviours across the man-made GS/SGS frontier, it is devoid of physical
content. This is sometimes seen as one of its advantages: since it assumes nothing
about the physics of the SGS, there is no risk of distorting that physics! But, on the
general principle that inaction has as many consequences as action, this is uncon-
vincing. The similarity method assumes that the solution near the frontier is typical
of all SGS. This belief has no theoretical basis, and the analyses of Section 4.8 indi-
cate that it is untrue. The Navier-Stokes-alpha model may be in a happier situation,
but that too involves approximations that are hard to justify.

Engineering methods were devised for the computer age, and not surprisingly they
are numerically convenient to apply. Their value in studying core convection and
the geodynamo has yet to be proven. Meanwhile the traditional approach, though
physically illuminating, seems to be at an unsatisfactory dead end. Perhaps the
insights needed to guide theory and to resolve the geodynamo paradox will emerge
first from laboratory experiments (see Chapter 8).
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CHAPTER 5

PLANETARY DYNAMOS

Christopher Jones

This chapter is devoted to planetary dynamos. After reviewing observational facts
(Section 5.1), we identify some outstanding problems in planetary dynamo theory
(Section 5.2). In the light of the observational evidence, we address the conditions
needed for dynamo action (Section 5.3), the possible energy sources for planetary
dynamos (Section 5.4), the internal structure of the planets (Section 5.5), and the
dynamics of planetary interiors (Section 5.6). We finally review, in Section 5.7, the
existing numerical planetary dynamo models.

5.1. OBSERVATIONS
OF PLANETARY MAGNETIC FIELDS

The solar system is conventionally divided into the Sun, the planets, their satel-
lites and the asteroids, comets, gas and dust which are gravitationally bound to the
Sun. For our purposes, planets means any planet or satellite with a radius greater
than 1000 km. Bodies smaller than this are unlikely to have dynamos, because their
interiors are not electrically conducting. The largest satellites are comparable in
magnitude to the smaller planets, and the structure of their cores is not likely to be
fundamentally different. The bodies in the solar system that have radii over 1000 km
are the giant planets Jupiter and Saturn, the ice giants Uranus and Neptune and the
terrestrial planets which have rocky mantles and iron cores. These terrestrial planets
comprise the four inner planets, Mercury, Venus, Earth and Mars, our Moon, the four
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Galilean satellites of Jupiter, Io, Europa, Ganymede and Callisto, the largest satel-
lites of Saturn and Neptune, Titan and Triton, and the planet Pluto. A useful source
of basic information about the planets and the space missions which explored them
is the Encyclopaedia of Planetary Sciences, (1997). At present, we do not have the
means to detect magnetic fields in the recently discovered extra-solar planets, but
it is very likely that strong magnetic fields exist there. Recent reviews of planetary
magnetic fields, including dynamo aspects, have been given by Stevenson, (2003)
and Jones (2003). Older reviews, but still containing much useful information, are
Stevenson (1982a, 1983), Levy (1995).

Most of our knowledge of planetary magnetic fields has come from the space probes
launched over the past thirty years. The Earth’s magnetic field was discovered in
ancient times, but only Jupiter was known to have a magnetic field before space
exploration began. Jupiter’s field was first discovered from its radio emission (Burke
and Franklin, 1955), although subsequent missions have given far more detail about
the nature of the jovian field. Mercury’s magnetic field was explored by Mariner
10 in 1974/5, while the two Voyager probes explored the fields of the outer planets.
Voyager 1 and 2 both reached Jupiter in 1979, going on to Saturn, while Voyager
2 flew by Uranus and arrived at Neptune in 1989. The Galileo mission explored
Jupiter and its satellites from 1995. Our understanding of planetary dynamos really
dates from these misions. It was not possible to successfully predict which planets
had fields or the form and strength of those fields before the planets were visited.
At the time of writing, this exploration of planetary magnetic fields is still being
actively undertaken. The Cassini mission will reach Saturn this year (2004) and
will explore both Titan and Saturn. Several missions to revisit Mercury are in the
advanced planning stage, and it is likely that the martian field will be better mapped
soon.

We can at the outset divide planetary magnetic fields into those which are being
maintained by current systems in the planetary interior and those where the field
comes from only from remanent magnetism. It was established by C.F. Gauss early
in the 19th century that the main field of the Earth is of internal origin, though the
much smaller external components which originate from the interaction of the iono-
sphere with the solar wind can also be detected. There are also significant contribu-
tions from remanent crustal magnetic fields to the geomagnetic field; the discovery
of permanently magnetised rocks goes back to antiquity. In the case of the Earth,
we know that the field evolves slowly but significantly with time (the secular varia-
tion of the geomagnetic field) and also that the field can undergo complete reversals
over a time-scale of around a few thousand years (Merrill et al., 1996). Permanent
magnetism is therefore not an adequate explanation of the Earth’s main field. Of
course, we have very limited information about the history of other planetary mag-
netic fields, so the same arguments cannot be used. However, the Earth’s crustal
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magnetic fields are typically rather weak (less than 0.1% of the main field), and it
seems unlikely that crustal magnetic fields on other planets would be enormously
stronger. Furthermore, crustal fields cannot occur at high temperature, since rocks
rapidly lose their magnetism if heated more than a few hundred degrees. Since the
temperature of the deep interior of the larger planets is believed to be several thou-
sand degrees, remanent magnetism would be confined to a relatively thin surface
shell. It is then rather unlikely that the field would be coherent over the whole sur-
face of the planet, required to explain the existence of a large-scale dipolar field. It is
these difficulties which have suggested to most scientists that the magnetic fields on
planets are mainly generated by dynamo processes going on in the interior . To de-
scribe the form of a planetary magnetic field we need a mathematical model of that
field. This is done by expansion in spherical harmonics, a technique that also goes
back to C.F. Gauss (see e.g. Merrill et al., 1996). The natural system of coordinates
for this problem is spherical polar coordinates (r, θ, φ) based on the rotation axis.
Outside the conducting core of the planet, where no currents can exist, the potential
Φ, where ∇Φ = −B , satisfies ΔΦ = 0 [see (1.62a,b)]. It follows that Φ can be
expanded as

Φ = a

∞∑
�=1

�∑
m=0

(a

r

)�+1

Pm
� (cos θ)(gm

� cos mφ + hm
� sin mφ) , (5.1)

where a is the planetary radius. The coefficients gm
� and hm

� are known as the Gauss
coefficients. For the Earth, these coefficients have been measured with increasing
accuracy since the initiative of Gauss led to the setting up of magnetic observatories
in the 19th century. For many of the planets, these coefficients have been recon-
structed from one or two fly-bys of a space probe. The largest component for the
geomagnetic field is the g1

0 component which corresponds to a dipole field. This
field is antisymmetric about the equator, but it is perfectly possible for the g2

0 com-
ponent quadrupole fields, which are symmetric about the equator, to be generated by
the dynamo process. Part of the dynamo problem is to explain which type of field is
generated in the core.

Of the planets listed above, Pluto and Triton are as yet unexplored, as is Titan,
though this will be visited soon. In Table III we list some of the observed properties
of planetary magnetic fields. The sources for this data are Lodders & Fegley (1998),
Russell (1993), and Connerney (1993). The dipole moment M is given in units of
A m2, and is related to the Gauss coefficients by the formula M = 4πa3g0

1/μ0. Note
that in some older papers a different definition of the dipole moment, without the
factor 4π/μ0, is used.

We start by considering the four inner planets. Of these, only the Earth definitely has
a dynamo. Far more is known about the form and history of the Earth’s magnetic
field, than about other planets and we discuss this in more detail below. Mercury is
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Table III - Planetary magnetic fields.

Dipole Planetary Core Max Field Dipole Rotation
moment radius radius at CMB inc. rate Ω

A m2 106 m 106 m 10−4 T degrees 10−5 s−1

Mercury 4.3 × 1019 2.438 1.9 0.014 < 10 0.124

Earth 8 × 1022 6.371 3.48 7.6 11.5 7.3

Ganymede 1.3 × 1020 2.634 0.48 2.5 ≈ 10 1.02

Jupiter 1.5 × 1027 69.95 56 17 9.6 17.6

Saturn 4.2 × 1025 58.30 32 2.5 0.8 16.4

Uranus 3.8 × 1024 25.36 18 1.3 58.6 10.1

Neptune 2.0 × 1024 24.62 20 0.52 47.0 10.8

a difficult case, because its magnetic field seems a bit too strong to be explained by
crustal magnetism, but rather weak in comparison with the other dynamo generated
fields. Another difficulty is that Mercury has not been revisited since 1974/5, and the
Mariner 10 fly-by gave only very limited data. In particular, we do not know whether
the field is really a dipole dominated field or is dominated by higher order spherical
harmonics. We now come to two absentees in Table III, Venus and Mars. The ques-
tion of why some planets do not have magnetic fields is almost as interesting as why
others do have such fields, and the case of Venus is particularly intriguing, as the
overall structure of Venus is apparently not that dissimilar to the Earth. Venus has,
however, no measurable large-scale magnetic field. Mars has only a rather small
magnetic field, which appears to be mainly remanent magnetism. Observations of
the martian field from the Mars Global Surveyor are shown in Figure 5.1, by cour-
tesy of M. Purucker (see Purucker et al., 2000 for details). This gives the radial field
just above the surface of Mars, and raises the question of how and when the martian
rocks got magnetised. The most popular view is that Mars had a dynamo in the past,
but it has now ceased to operate (Ruzmaikin, 1991; Stevenson, 2001). Our moon
also has magetised rocks but no current dynamo, so it too may have had a dynamo
in the past.

Of the explored outer planets, Jupiter, Saturn, Uranus and Neptune all have quite
strong magnetic fields, and so probably have dynamos acting in their interior. Jupiter,
the largest planet, has the strongest magnetic field. It is dipole dominated, but as with
the Earth, the nonaxisymmetric components are sufficient to incline the dipole axis
about 10◦ from the rotation axis. Saturn’s field is somewhat smaller than Jupiter’s
and is remarkably axisymmetric, so its magnetic axis is almost perfectly aligned
with its rotation axis. This was quite a surprise when the field was measured by the
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Figure 5.1 - Radial magnetic field at 200 km altitude in colour, overlain on a gray-
shaded topographic gradient map of Mars (MOLA data). The dark grey bands show
regions of inadequate data coverage (courtesy of M. Purucker). ( See colour insert.)

Voyager 2 mission, because all other known planetary fields at that time suggested
that a dipole inclined by around 10◦ was the standard behaviour. In Figure 5.2, a
rather beautiful picture taken from the Hubble space telecope shows Saturn’s auro-
rae. These are produced by particles from the solar wind being trapped by Saturn’s
magnetic field near its magnetic poles, just as our own northern and southern lights
are produced on Earth. It is clear from alignment of the aurorae and the ring system
that the magnetic poles of Saturn are closely coincident with its rotation axis.

The magnetic fields of Uranus and Neptune created yet more surprise at the time of
the Voyager 2 fly-by. Up to that time, it was believed that all planetary magnetic
fields were dipole dominated, but the fields of these planets are more quadrupolar
than dipolar. The fields are also highly non-axisymmetric, with no obvious align-
ment with the rotation axis. An equatorial dipole, that is a dipole whose axis points
along the equator rather than along the axis, is a better model of the field, but a
detailed analysis of the observations (Holme & Bloxham, 1996) shows that the
equatorial dipole model is too simple, and quadrupolar components are essential
for describing the field.

The very successful Galileo mission made many observations of the magnetic fields
of the four Galilean moons of Jupiter. A new problem emerges here, because all the
moons are quite close to Jupiter, and are therefore bathed in the magnetic field of
Jupiter itself. Note that this problem does not arise with the solar magnetic field;
the solar wind does carry some solar field out to the planets, but it is much weaker
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Figure 5.2 - The aurorae of Saturn observed by the Hubble space telescope (courtesy
of NASA). (See colour insert.)

than the internal field. This problem is particularly severe with Io, the innermost
moon of Jupiter. The magnetic field of Jupiter is measurably perturbed by Io, but is
this because Io is generating its own magnetic field or is this signal just an inductive
response from an electrically conducting core to the time-varying jovian magnetic
field? (Kivelson et al., 2001). The problem of dynamo generation in an ambient
magnetic field is significantly different from the problem of dynamo generation in
an isolated system.

The third moon of Jupiter, Ganymede, has a very distinct magnetic signal, and theo-
retical considerations (Sarson et al., 1997, 1999) suggest that this cannot be simply
a response to Jupiter’s field. The signal is too strong and Jupiter’s field not strong
enough at that distance. The remaining moons, Europa and Callisto, appear not to
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have internal dynamos. The inductive response of Europa is of particular scien-
tific interest, though, because it suggests that Europa has liquid water below its icy
surface (Spohn & Schubert, 2003), raising the possibility that it might support life.
Ganymede is quite small to have a dynamo, and the question arises as to why its core
has not cooled down and frozen out (Showman et al., 1997), particularly as Mars
has apparently lost its dynamo. It is clear that the thermal history of a planet has a
very significant bearing on whether or not it has a magnetic field, and so this is an
issue we consider below.

5.2. SOME OUTSTANDING PROBLEMS
IN PLANETARY DYNAMO THEORY

As we shall see below, there are formidable difficulties in solving the mathemati-
cal equations governing dynamo theory, and many of the basic physical quantities
in planetary cores are only very poorly known. Nevertheless, a consensus view
is beginning to emerge that planetary magnetic fields are generated by convection
driven dynamo action in their cores. It seems likely that this mechanism can produce
magnetic fields of the required strength and form without the necessity of adopting
wildly unrealistic values of the physical parameters. However, there are a number
of serious unresolved problems that face this theory, and general acceptance of the
theory will only come when reasonable solutions of these issues can be provided.
As we discuss the theory below, we refer to these problems and suggest possible
explanations. Working outwards from the Sun the issues are

(i) Why is Mercury’s field so weak?

It is evident from Table III alone that Mercury has a rather weak field compared to
the other planets. Let us recall that dimensionless parameter that theory suggests
should be used to measure field strength is the Elsasser number [see Section 4.2,
(4.8a)],

Λ =
|B|2
ρΩημ

. (5.2)

These quantities can all be estimated, and if the surface field strength is used, the
Elsasser number is just less than unity for all the planets except Mercury, where it is
very much less than unity.

(ii) Why does Venus not have a magnetic field?

Some authors (e.g. Levy, 1995) have suggested this may be connected with the
slow rotation rate of Venus (0.30 × 10−6s−1), but others disagree (e.g. Stevenson,
2003; Nimmo, 2002). The possibility that the lack of a venusian dynamo might be
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connected with the different type of mantle convection occurring there is considered
in Section 5.5. Although the rotation rate is low, in dimensionless terms the relevant
parameter is the Rossby number

Ro =
U∗

LΩ
, (5.3)

where U∗ is the typical velocity of the convective flow, and L is the typical size of
the convecting core. For the dynamics to be strongly affected by rotation, Ro must
be small. Even though the rotation rate of Venus is small, the convective velocities
in planetary cores are also very small, so that any plausible estimate gives Venus a
small Rossby number. So it is not sufficient just to say that the rotation of Venus is
too small for a dynamo to be expected.

(iii) How did the Earth’s dynamo work before the inner core formed?

Studies of the thermal history of the Earth suggest that the solid inner core of the
Earth only started forming 1 to 2 billion years ago (Labrosse et al., 2001). Pale-
omagnetic evidence indicates that the magnetic field of the Earth existed at least
3.5×109 years ago. It is generally believed that compositional convection, based on
the deposition of almost pure iron on the inner core and the stirring produced by the
release of buoyant light material at the inner core boundary, is currently driving the
geodynamo. Compositional convection of this type requires an inner core, so what
was the energy source for the geodynamo when there was no inner core?

(iv) Why did the dynamo of Mars fail?

The strong coherent remanent magnetism found in martian rocks suggests that there
must have been a strong field on Mars in the past (Stevenson, 2001). There is no
dynamo operating now, so something must have happened to shut down the dynamo
on Mars. Since Mars is smaller than the Earth, a natural suggestion is that the core
has completely frozen and now consists of solid iron incapable of sustaining the
fluid motion necessary for dynamo action. Unfortunately, this simple idea is almost
certainly wrong, as measurements of the solar tides from the Mars global surveyor
indicates that Mars still has a substantial fluid core (Yoder, 2003).

(v) How does Ganymede maintain a dynamo when its core is so small?

The magnetic Reynolds number, defined in Section 5.3 below, is believed to be a few
hundred for the Earth’s dynamo. Since Ganymede’s core is about ten times smaller,
if the electrical conductivity and flow speeds are similar to the those in the Earth’s
core, the magnetic Reynolds number for Ganymede’s dynamo is only 20–30. No
convection driven dynamo models have been found that sustain a magnetic field at
such low magnetic Reynolds numbers.
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(vi) Why is Saturn’s field so axisymmetric?

This actually presents an interesting theoretical puzzle, because of Cowling’s fa-
mous anti-dynamo theorem, which states that it is not possible to maintain a purely
axisymmetric magnetic field by fluid motion, see Section 1.3. Possible ways out
of this paradox are discussed below, and are based on the idea that the actual field
of Saturn in the core is non-axisymmetric, but we only see a filtered version of the
field, with these non-axisymmetric components removed (Stevenson, 1982b).

(vii) Why are the fields of Uranus and Neptune so unusual?

While all the other planets have fields which are basically dipolar, these two ice
giant planets have large scale fields which are not even approximately aligned with
the rotation axis, and contain substantial non-dipolar components. Clearly, some
rather different process is going on in these planets, but why should this be so if the
basic driving mechanism is similar to that of the other planets? There has been some
recent work on this problem discussed in Section 5.7 below.

This is a formidable list of challenges, and it might be concluded that there must be
other fundamental mechanisms at work generating planetary magnetic fields beside
convection driven fluid dynamos. This may of course be the case, but we do not
think we can draw this conclusion at the present time. It seems more likely that
these problems reflect our ignorance of the physical and chemical conditions inside
planetary cores, our lack of knowledge of the behaviour of matter at very high pres-
sure, and our inability to solve the dynamo equations other than in a highly restricted
region of parameter space. Progress towards removing these theoretical obstacles is
being made. If it turns out that these seven challenges still cannot be addressed, then
the basic picture will have to be changed, but we have not yet reached that position.

5.3. CONDITIONS NEEDED FOR DYNAMO ACTION
IN PLANETS

The magnetic induction equation (4.5a) can be thought of as a competition between
the induction term ∇ × (u × B) through which the fluid motion creates magnetic
field, and the ohmic diffusion term η ΔB which dissipates field through electrical
resistance. If the typical velocity is U∗ and the size of the electrically conducting
region is ro, the ratio of these terms is the magnetic Reynolds number

Rm =
U∗ro

η
. (5.4)

For a dynamo to work, Rm must be at least around 10, and numerical dynamo
simulations usually fail to sustain a dynamo unless Rm is at least close to 100.
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More precise conditions on Rm for dynamo action were presented in Chapter 1.

So to discover whether a dynamo is operating, we need to know the magnetic diffu-
sivity (or equivalently the electrical conductivity), the typical velocity and the size
of the dynamo region. Electrical conductivity is discussed in detail in Section 5.5
below. For the Earth, there are two independent ways of estimating the typical ve-
locity from observations, through the secular variation and through decadal length
of day variations. Secular variation is the rate of change of the geomagnetic field. It
is not possible to rigorously derive the flow velocity from secular variation data, but
estimates of the typical velocity of U∗ ≈ 2 × 10−4 m s−1 are suggested by Bloxham
& Jackson (1991). If the decadal variations in the length of the day are ascribed to
core motions, and total angular momentum is conserved, an independent estimate of
core velocity also around this value is obtained (Jault et al., 1988; Jackson, 1997).
The size of the Earth’s fluid core is accurately known from seismology (3485 km),
and using η ≈ 2 m2 s−1, we obtain Rm ≈ 350, large enough for dynamo action.

When we come to the other planets, it is much more difficult to estimate Rm reliably.
We can make plausible estimates of the size of the electrically conducting region for
most of the planets, though Uranus and Neptune are difficult. More data is now
available about electrical conductivity (see Section 5.5 below). It is the estimation
of the typical velocity that is most difficult. In the case of Jupiter, some observational
evidence is available (Russell et al., 2001) because we can estimate the change in the
magnetic field over the 25 year interval between the Voyager and Galileo missions.
This suggests a typical velocity of around ten times the Earth’s value U∗ ≈ 2 ×
10−3 m s−1 , which leads to a value of Rm substantially larger than for the Earth.
For all other planets we can only make estimates from theoretical considerations
(Starchenko & Jones, 2002), discussed in Section 5.6 below.

The fluid velocity expected in the core depends on the energy source that is maintain-
ing the field. The magnetic energy equation is formed by taking the scalar product
of (4.5a) with B and integrating over the volume of the core,

1

2

∫
D

∂

∂t
|B|2 dx =

∫
∂D

E × B

μo

dS−
∫
D

[u · (j × B) − Qj] dx , Qj = ημ0|j|2 .

(5.5a,b)
The surface integral is the Poynting flux of magnetic energy out of the core, and Qj

is the ohmic dissipation. The remaining term is the work done by the Lorentz force,
and this must be balanced by the work done by the driving forces in the equation of
motion to maintain the dynamo.

In summary, for a dynamo to operate inside a planet we must have

(a) A large electrically conducting region in the interior.

(b) This region must be in a liquid or gaseous state, and not frozen out.
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(c) Some energy source must be present to stir the fluid at a velocity correspond-
ing to a magnetic Reynolds number of around 100 or more.

(d) The form of the flow must be such as to generate a large scale dynamo.

Issue (a) and (b) are discussed in Section 5.5 on the internal structure of the plan-
ets. Issue (c) is discussed in Sections 5.4 & 5.6, and issue (d) can be addressed by
numerical dynamo simulations, Section 5.7 below. All of these areas of planetary
science are in a state of active development, and many fundamental uncertainties
remain.

5.4. ENERGY SOURCES
FOR PLANETARY DYNAMOS

A number of different mechanisms have been suggested to drive the Earth’s mag-
netic field other than a dynamo, and these could in principle power planetary mag-
netic fields. They are listed by Stevenson (1983) and Merrill et al. (1996), but none
has gained any widespread acceptance, because they are incapable of maintaining
the field strength found in planetary dynamos. The only exception is the thermo-
electric effect, which Stevenson (1987) suggested as a possible power source for the
rather weak field of Mercury.

If the dynamo origin is accepted, there remains the question of the driving mecha-
nism stirring the fluid. This is still controversial. The four main contenders are ther-
mal convection, compositional convection, precession and tidal forcing. The front
runners are thermal and compositional convection, and we focus on these here, al-
though precession driven dynamos are still being actively studied (Aldridge, 2003).
Tides and precession draw their energy from the Earth’s kinetic energy of rotation
(Malkus, 1994). The thermal energy of a planet comes from the gravitational energy
liberated at the time of formation, 4.5 × 109 years ago. Compositional convection
in the Earth (Braginsky, 1963) arises from the gradual freezing of the inner core of
the Earth (see Section 4.1.2). The density of the solid iron inner core is somewhat
greater than that of the liquid outer core, because the outer core has a significant
amount of light elements in addition to the molten iron. As the Earth cools, the in-
ner core is growing because solid iron freezes onto it. As the iron freezes, the lighter
components rise up through the core, stirring it by this compositional convection.
Since heavier material is accumulating at the bottom of the outer core, gravitational
energy is liberated by this process. Ultimately, this process must stop when all the
iron in the outer core has frozen out, but this may take many billions of years.

Whatever the energy source, the work done must be sufficient to maintain the field
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against Ohmic diffusion [equation (5.5a,b)], so it is of interest to try to estimate how
much energy is lost by this process. This has recently been discussed in detail in
Roberts et al. (2003); see also Christensen & Tilgner (2004). It turns out that Ohmic
loss depends largely on the small scale components of the field, and on whether the
observed external field is all there is in a planetary core. If the internal field in the
Earth’s core is as smooth as possible, and there is no hidden toroidal component of
the field, the ohmic dissipation could be as small as 43 MW. This can be compared
with 44 TW of heat coming out of the interior of the Earth, and around 0.5 TW
liberated by compositional convection. However, the estimate of 43 MW is very
much a lower bound. Dynamo simulations typically show only a rather small frac-
tion of their magnetic field emerging through the core-mantle boundary. The typical
magnetic field wound up in the core can be ten times the size of the escaping field
given in Table III. Also, at magnetic Reynolds numbers large enough to sustain a
dynamo, there are substantial small-scale components to the field which enhance the
dissipation. In the Glatzmaier-Roberts (1997) simulations the dissipation was about
0.3 TW, but this could be a significant underestimate due to the use of enhanced
diffusion coefficients, which makes the computed field smoother than the real thing.

The current rotational energy of the Earth is 2 × 1029 J, so if it was originally twice
this value, rotational energy is liberated at a rate of around 1.5 TW. Most of this
energy is going into driving oceanic and solid Earth tides, so that the energy bud-
get for a precessionally driven dynamo is quite tight. The other difficulty is that
the forcing is on the short rotational timescale, so the modes directly excited are
the high frequency inertial modes of oscillation. To drive a dynamo, these have to
be converted into flows varying on the very long (thousand year) dynamo timescale
without a big loss of efficiency. Nevertheless theoretical progress is being made on
precession driven flow (e.g. Aldridge, 2003) and with our present state of knowl-
edge, precessionally and tidally driven dynamos cannot be excluded.

Since the amount of heat coming out of the planets is large compared to the amount
of ohmic dissipation, it is natural to invoke this as the primary energy source for the
dynamo. However, it is not necessarily true that the heat coming through the surface
of the planet passes through the dynamo region. In the Earth, less than half of the
44 TW coming through the surface comes out of the core. Indeed estimates for the
heat flux through the CMB vary from about 3 TW to 15 TW. Furthermore, by no
means all of the heat flux coming out of the core is available to drive the dynamo.
There is a “Carnot” type efficiency factor involved (Gubbins, 1977, Roberts et al.,
2003) which means that the useful heat flux is no more than a fraction δT/T . Here
δT is the temperature difference across the conducting core, probably somewhat
over 1, 000 K for the Earth, and T is the mean core temperature, probably around
4, 500 K for the Earth. The actual efficiency factor may of course be significantly
less than this, depending on where in the core the bulk of the field is generated. In
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consequence, it is believed that although compositional convection is estimated as
generating only 0.5 TW, because of its high efficiency factor, it could be making a
similar or greater contribution to driving the geodynamo at present.

5.5. INTERNAL STRUCTURE OF THE PLANETS

The planets can conveniently be grouped into three main categories, the gas giants
Jupiter and Saturn, the ice giants Uranus and Neptune, and the rest, which are called
the terrestrial planets. The structure of these different categories are quite distinct,
so we discuss them separately, though when we come to dynamo modelling, we see
that it may be possible to use the same basic methods to treat all the planets.

Terrestrial planets

As a first step, we assume that all the terrestrial planets have a composition similar
to that of the Earth, that is an iron core, which may be divided into a liquid outer
core and a solid inner core, surrounded by a rocky mantle. This picture seems to be
consistent with the gravity fields of the terrestrial planets. The size of the metallic
core in these planets is inferred from its radius, mass and moment of inertia. The
moment of inertia is related to the gravity field, and for all planets visited by space
probes, this is quite well-known. The moment of inertia gives the degree of central
condensation, 0.4 times the mass times the radius squared being the value for a
uniform density planet. Assuming the core has the density of iron (at the appropriate
pressure) we can estimate the core size, to arrive at the data in Table III. It might
be wondered why we are confident that the liquid iron core starts to freeze from the
centre which is the hottest part of the core. The melting point rises with pressure,
and the centre of the planet has the highest pressure, so although the temperature is
higher there, the liquid first freezes at the centre. We therefore expect that during the
hot formation phase the temperature will be hot enough for the core to be entirely
liquid, but as the planet cools a solid inner core starts to form at the centre, gradually
expanding as time goes on. For the Earth, the inner core is believed to have started
forming between 1 and 2 billion years ago, and its present radius is 1220 km, the
liquid outer core having a radius of 3485 km. The freezing point of iron is strongly
depressed by the presence of impurities. Since the solid inner core is mainly pure
iron, whereas the outer core contains impurities, this means the impurity content of
the liquid outer core is continually rising as the outer core expands, making it very
difficult for the outer core to freeze completely.

It is not sufficient for the planet to have a liquid electrically conducting core; the
core must also be convecting heat out. For this to happen, the amount of heat coming
out of the core must be greater than that which can be carried down the adiabatic
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gradient (see Sections 1.1.3 & 4.2). If this is not the case, no convection occurs, as
the required heat flux is entirely carried by conduction. An alternative is possible if
the core is stirred by compositional convection; then a negative convective heat flux
can occur (Loper, 1978).

For liquid metal cores, we can give plausible estimates of the adiabatic temperature
gradient in the core. Let us recall the adiabatic temperature gradient

1

Tad

(dT

dr

)
ad

= −α g

cP

, (5.6)

where g is the magnitude of the local gravity, α is the coefficient of thermal expan-
sion and cP is the specific heat at constant pressure (see page 8). The pressure is
determined by

dp

dr
= −gρ , (5.7)

together with an equation of state ρ = ρ(p, T ). When solving (5.6), some reference
temperature is needed at one point in the core. This should come from the Core-
Mantle boundary temperature. For a complete understanding of the temperature
structure of the planet, we should solve a mantle convection model to find the tem-
perature difference between the surface of the planet and the Core-Mantle boundary,
which is then the boundary condition for (5.6). Integrating inward, we would then
reach the pressure and temperature at which the solid inner core is in equilibrium
with the liquid outer core, the liquidus temperature. This then tells us the size of
the inner core, and we have the temperature and pressure structure of the fluid outer
core. This procedure is described in Schubert et al. (2001). In practice, there are
considerable uncertainties because of lack of knowledge of mantle convection, in
particularly how to treat tectonic plates satisfactorily. In the Earth, geophysicists use
seismic evidence about the location of the CMB and ICB, and use theory to predict
the melting temperature of the ICB. (5.6) is then used to find the CMB temperature.
Unfortunately, it is not particularly easy to estimate the liquidus temperature as a
function of pressure, because it is strongly affected by the amount (and chemical
composition) of the light element component of the outer core. However, this is
an area where the recently developed ab initio quantum calculations (Vočadlo et al.
2003) can help, and it seems that the ICB temperature is around 5, 400 K and the
CMB is near 4, 000 K . For other planets, we have no direct evidence as to whether
an inner core exists or not, and no information as to the depth of the ICB, although
this may become available through data on planetary nutation (Dehant et al., 2003).
We therefore have to do the best we can using simple mantle convection models
(Schubert et al., 2001) to predict the CMB temperature, and then use this as the
boundary condition for (5.6). In principle, the solution of (5.6) tells us whether an
inner core exists, and hence whether compositional convection is occurring.
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The heat flux carried down this adiabatic gradient by conduction and radiation is

Fad = −κ ρ cP

(dT

dr

)
ad

. (5.8)

If the actual heat flux is F , then the conduction gradient is defined by

F = −κ ρ cP

(dT

dr

)
cond

. (5.9)

In the Boussinesq approximation, convection occurs if

Ra =
g α d4

κ ν

[(dT

dr

)
cond

−
(dT

dr

)
ad

]
> Racrit, (5.10)

where Racrit is some number depending on the geometry, the boundary conditions
and whether rotation and magnetic fields are important. In practice κ ν Racrit/g α d4

is a very small temperature gradient, so F > Fad, the Schwarzschild criterion, gov-
erns whether convection occurs. In the Earth, and indeed all terrestrial planets, F
and Fad are of similar magnitude, so it is non-trivial to establish whether convection
is occurring.

The thermal conductivity, k is required for this calculation. It can be estimated
in terms of the magnetic diffusivity using the Wiedemann-Franz law for electronic
conduction,

k = κ ρ cP = 0.02 T/η , (5.11)

where T is the temperature and η is the magnetic diffusivity, which is ≈ 2 m2 s−1

in the Earth’s core, and is probably not that different in the other terrestrial planets.
Stevenson (2003) notes that if η were reduced, which would help to increase the
magnetic Reynolds number and hence enhance dynamo action, k is increased so the
conducted heat flux down the adiabat is increased. This makes it more difficult to
for the fluid to convect, as then a larger F is needed to ensure the Schwarschild
criterion for convection is satisfied. This means that terrestrial planet dynamo action
is always going to be a marginal affair. This may, however, help to explain some
of the mysteries mentioned in Section 5.2 above. If the Earth has F just above Fad,
convection occurs and a dynamo is possible. Possibly the rather different nature of
mantle convection on Venus means that on that planet F is just below Fad and so
there is no convection and so no dynamo (Stevenson, 2003, Schubert et al., 2001).
Similarly, Mars might have had sufficient heat flux F in the past for it to be greater
than Fad but in the course of time it fell below, stopped convecting and so lost its
dynamo.

These are attracive ideas, but there are still many uncertainties. Even the heat bal-
ance in the Earth’s core is still controversial. Recent estimates (Roberts et al., 2003)
suggest that the core is losing just over 2 TW due to secular cooling, and just over
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4 TW due to latent heat release at the inner core boundary. The heat conducted down
the adiabatic is around 6 TW, so with these numbers the core is just convective ev-
erywhere. However, it is also possible there is radioactive heating from potassium
in the core (discussed in Roberts et al., 2003), in which case there could be more
vigorous convection throughout the core. This might help to explain how the Earth
maintained a dynamo before the inner core formed; if there was then vigorous ther-
mal convection driven by radioactivity this might be sufficient to power the dynamo
without the need for compositional convection. Another source of uncertainty is
the amount of light element (possibly sulphur) in planetary cores. With a high pro-
portion of sulphur, cores stay liquid longer, and this may explain why Mars has a
substantial liquid core at present (Yoder, 2003).

5.5.1. GIANT PLANETS

There has been significant progress in our understanding of the interiors of giant
planets, fuelled partly by the search for extra-solar giant planets (Hubbard et al.,
2002). The first step is to construct models based on solutions of (5.6) and (5.7),
but the equation of state is now considerably more complex because the pressure
in giant planets can reach values at which quantum effects become important, turn-
ing hydrogen into a metal with free electrons, pressure ionization. This makes the
equation of state a complicated issue (Hubbard et al., 2002) which is studied by
theoretical calculations and high pressure shock experiments. The important issues
for dynamo theory are whether the interior is convective throughout or has stably
stratified zones, whether there is a phase change boundary and how the electrical
conductivity varies with depth.

It is generally believed that the interiors of the giant planets are fully convective,
the heat flux being blocked by the high opacity of the very outermost layers in the
atmosphere (Hubbard, 2002). However, uncertainties remain and a possible stably
stratified region may exist at a pressure of around 100 GPa (1 Mbar) where met-
allization occurs. The current view (Guillot, 1999) is that there is no sharp jump
between the molecular hydrogen-helium atmosphere and the metallic core, so the
electrical conductivity rises smoothly as we go into the interior, reaching a plateau
of 2 × 105 S m−1 (the Earth’s value is usually taken as 5 × 105 S m−1) at a pressure
of 140 GPa (Nellis, 2000) which corresponds to a radius of about 0.9 RJ , where
the temperature is about 5, 000 K. In Saturn, the critical pressure of 140 GPa is
only reached at about 0.5 RS , so the conducting core of Saturn is a much smaller
fraction of the planet than is the case for Jupiter. It is important to note that the
magnetic Reynolds numbers of the giant planets will be much larger than for the
Earth. If the typical velocities are roughly ten times those in the Earth’s core,
and the size of Jupiter’s core is roughly ten times that of the Earth, Rm will be
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at least 50 times the Earth’s value. It is therefore possible that dynamo action could
be occurring at lower pressures than the 140 GPa where full metallization occurs.
In this zone, for pressures between 50 GPa and 140 GPa, Nellis (2000) suggests
log10 σ ≈ 3 × 10−11p + 1.1 where σ is in Sm−1 and p is the pressure in Pa.

5.5.2. ICE GIANTS

The theory of the internal structure of Uranus and Neptune is much less developed
than that of the giant planets (Hubbard et al., 1996, Miner, 1998). Both planets are
believed to have three zones, a rocky core with a radius of about one third the plan-
etary radius, an “ice” layer consisting of a mixture of water and ammonia extending
to about 0.75 of the planetary radius, and a deep outer hydrogen/helium atmosphere
extending to the surface. The electrically conducting zone is believed to be the ionic
ice zone. This zone is believed to be fluid on the basis of ab initio quantum calcula-
tions (Cavazzoni et al., 1999), and these calculations also support the shock experi-
ment results of Nellis et al. (1997) for the electrical conductivity. This is due entirely
to the movement of ions in the liquid, and rises to a value of around 3 × 103 S m−1

at a pressure of 40 GPa. At higher pressures, Cavazzoni et al. (1999) suggest that
the ionic conductivity rises slowly to reach 104 S m−1 at 300 GPa. Above this, they
suggest that metallization may occur, that is electron conductivity, which could lead
to conductivities of the order of 2 × 105 S m−1 in the deepest part of the ice layer.
The pressure at the bottom of the ice layer (at 0.3 of the planetary radius) is around
600 GPa, the temperature there being about 7, 000 K . Note that ionic electrical con-
ductivity is typically a hundred times less than electronic conductivity, so that unless
velocities are much higher than in the Earth’s core, the magnetic Reynolds number
will be marginal despite these planets being ten times as big as the Earth.

5.6. DYNAMICS OF PLANETARY INTERIORS

The structure of planetary interiors is mostly calculated on the assumption that the
temperature gradient is close to its adiabatic value. Our treatment is based on the
geodynamo, but the same principles can be applied to all planetary cores. Dynamical
models start by assuming that the departure from the adiabatic state is small, so we
write

T = Tad + Θ, p = pad + p , etc. (5.12)

As discussed in the previous Sections, both thermal and viscous diffusion are small
in the Earth’s core and to obtain sensible models it is necessary to introduce turbulent
values, κT and νT. However, we need to retain both the molecular κ as well as the
turbulent κT in our description. In the Earth, the adiabatic temperature varies by
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over 1000 K over the core, but the convective temperature fluctuations driving the
motion are typically less than 10−3 K . The temperature gradients arising from the
adiabatic static profile are therefore at least six orders of magnitude greater than the
convective temperature gradients. So κ∇Tad can be of the same order as κT ∇Θ
even though κT may be six orders of magnitude larger than κ. The turbulence does
not directly affect the transport of heat down the adiabat, so no terms involving the
product of κT and ∇Tad appear.

The Boussinesq equations (4.5a-d) are often used to discuss the dynamics of plane-
tary interiors, though the anelastic equations are more suited to dynamo models of
the giant planets, since they can take into account the substantial density variations
occurring in their cores. In the anelastic approximation, the temperature equation is
replaced by an entropy equation, but in planets it is often the case that αT∗ � 1,
α being the coefficient of expansion and T∗ the typical temperature. Then the tem-
perature fluctuation Θ dominates the pressure fluctuation in the entropy, (the anelas-
tic liquid approximation) and equations rather similar to the Boussinesq equations
emerge, see Anufriev et al. (2005) for a recent discussion of the anelastic equa-
tions and their relation to the Boussinesq equations. Note that the typical value of
Θ is much smaller than T in planetary cores; typical values of Θ are in the range
10−3 − 10−4 K only.

The magnetic Ekman number Eη can be written as [U∗ro/η]−1[U∗/roΩ], i.e. Rm−1Ro
(Ro being the Rossby number). This is very small in the core, as is the Ekman num-
ber, so we expect the inertial and viscous terms to be unimportant in the planetary
cores, except on very small length and time–scales. The heat source term S in equa-
tion (4.5c) requires some explanation (Braginsky & Roberts, 1995, Anufriev et al.,
2005). The heat sources in the Earth’s core are the latent heat release at the inner
core boundary and (possibly) radioactive heating. The latent heat is more conve-
niently taken into account through the boundary condition, but we must not forget
that the core is cooling and the adiabatic gradient is not in general divergence free.
Any heat that is not conducted down the adiabat must be convected, so this is an
effective source term. So we obtain

S = ΔTad − Ṫad +
Q

δT cP

, (5.13)

where the adiabatic temperature is measured in units of δT , the temperature differ-
ence across the core, and Q is the radioactive heating in units of Wkg−1 (for details
see Anufriev et al., 2005). In practice, dynamo codes are often written without the
heat source term, but replacing it with a term β(r) ur to represent advection down a
mean temperature gradient. This can be justified by writing Θ = Θ̂ + T̂ (r) where T̂

is a solution of ΔT̂ + S = 0 satisfying appropriate boundary conditions at the core
boundaries. Then Θ̂ replaces Θ throughout, and the term β(r) ur is introduced into
the heat equation. No adjustment to the momentum equation is required, because a
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radially symmetric term can be absorbed in the pressure gradient. It is however im-
portant to realise that this T̂ is not the adiabatic temperature, but is a much smaller
temperature.

Even when they are enhanced by turbulence, the thermal and viscous diffusion terms
are small in (4.5c) and (4.5d). They are needed in numerical schemes for stability
reasons, but we expect that they are not part of the primary balance of terms. This
balance is the MAC balance, defined in Section 3.3.4 Besides the magnetic force,
Archimedean force and Coriolis force, pressure forces are also required, though
(4.5c) is usually solved by taking its curl to form the vorticity equation. We therefore
expect the viscous term, E Δu in (4.5c), to be small. Unfortunately, in spherical
geometry codes it has not yet proved possible to reduce E to very low values, though
this has been achieved in plane layer geometry at low Rossby number. The plane
layer dynamo equations have the same terms as the spherical equations (Jones &
Roberts, 2000, Rotvig & Jones, 2002), and so exhibit similar dynamics, but the
geometry makes the equations much more tractable numerically.

Rotvig & Jones (2002) solved the equations (4.5a-d) – (4.6a-d) in the limit of low
inertia, that is assuming Eη = 0, and they used a low Ekman number E = 10−5;
further details are given in their paper. They adopted a plane layer geometry, in
which the z–direction corresponds to the radial direction in which gravity acts, and
the rotation vector points in the (y, z)–plane, at 45◦ to the direction of gravity. This
therefore models conditions in a piece of a planetary core at latitude 45◦. To ex-
plore the relative strength of the various forces, a snapshot was taken in the course
of a numerical simulation of the dynamo equations, shown in Figures 5.3 (a-d). The
magnitudes are shown in the plane y = 0, though the pictures do not depend criti-
cally on which plane cross-section is taken. Figure 5.3 (a) gives the Coriolis force
|2Ω × u| in the dimensionless units. The maximum value, corresponding to the
darkest shade of red, is 1389. Fig 5.3 (b) gives the equivalent picture for the pres-
sure gradient |∇p|, and the maximum value here was 1949, slightly greater than the
maximum Coriolis force. The Lorentz force |j × B| is shown in Figure 5.3c, with a
maximum value of 2256. The Lorentz force therefore is larger than the Coriolis and
pressure forces at some places, but note that the Lorentz force is somewhat more lo-
calised than the other forces. The buoyancy force R̃a g Θ, which has a maximum of
576, is shown in Figure 5.3d. The fluid motion in dynamo simulations is continually
changing, so no particular significance attaches to the exact magnitudes of the forces
at any particular time. The important point is that all the forces are of comparable
strength, so all play a major role in the dynamics of planetary cores. The viscous
forces can also be constructed, but they are typically very small in the interior of the
fluid, though they are significant in the boundary layers.
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Figure 5.3 - Snapshot of the various forces in the y = 0 plane for a plane layer
dynamo at E = 10−5. (a) Coriolis force, (b) pressure force, (c) Lorentz force, (d)
Buoyancy force. (See colour insert.)

5.6.1. TYPICAL VELOCITY AND FIELD ESTIMATES

When investigating the MAC balance, it is helpful to consider the convected heat
flux

Fconv =
1

4πr2

∫
S

ρ cP ur Θ dS , (5.14)

which is better constrained observationally than the temperature fluctuation. In the
giant planets, Fconv will be close to the total heat flux coming out of the planet, while
for terrestrial planets Fconv is typically a substantial fraction of the heat flux coming
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out of the core. If 〈·〉 denotes the volume average, we can define the correlation
between ur and Θ as

χ =
〈
∫

S
urΘ dS〉

4πr2〈ur〉〈Θ〉 . (5.15)

An important question is whether this correlation is close to unity or much less. If it
is close to unity, then

〈 1

4πr2

∫
S

urΘ dS〉 ≈ 〈ur〉〈Θ〉 . (5.16)

We might expect there to be a high correlation, because hot fluid will rise and cold
fluid sink in general, but in a rapidly rotating magnetic fluid it is perhaps not so
certain. Experiments on rapidly rotating fluids without magnetic field (Aubert et al.
2001) suggest that the correlation remains of order unity. We write

Fconv ≈ χρ cP U∗ Θ∗ , (5.17)

where U∗ is a typical value of velocity and Θ∗ is a typical value of temperature. The
results of Rotvig & Jones (2002) suggest that the Coriolis force and the buoyancy
force are comparable, so

2ΩU∗ ≈ gαΘ∗ (5.18)

is expected. If we take the curl of the equation of motion and look at the component
parallel to the rotation, we obtain

2Ω ∂zuz ≈ ez · ∇ × g α Θ er . (5.19)

In a rapidly rotating fluid the length scale of variation perpendicular to the rotation
axis LH is smaller than the length scale parallel to the rotation axis Lz, by a factor
E1/3 (see e.g. Jones et al., 2000). This would give

2ΩU∗ ≈ (Lz/LH)gαΘ∗ ≈ E−1/3gαΘ∗ , (5.20)

rather than (5.18). Since E is very small in planetary cores, this is a very substantial
difference. However, in the presence of magnetic field, Lz/LH becomes smaller,
and ultimately is O(1) for strong fields. Retaining the factor Lz/LH and eliminating
Θ∗ using we obtain

U∗ ≈
[

gαFconvLz

2χLH ρ cP Ω

]1/2

, (5.21)

and Starchenko & Jones (2002) used

UMAC ≈
[
gαFconv

ρcpΩ

]1/2

, (5.22)

taking Lz/(2LHχ) = 1.
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This MAC balance regime is by no means the only possible one for planetary dy-
namos. Stevenson (1979, 2003) has suggested that mixing length theory provides
an alternative. Here the dominant balance is between buoyancy and inertia:

U 2
∗


≈ g α Θ∗ , (5.23)

where  is the mixing length, typically the core size or the density scale height. As
before, the heat flux equation (5.14) gives

Fconv ≈ ρ cP U∗ Θ∗ . (5.24)

Eliminating Θ∗ between (5.23) and (5.24) yields

Uml ≈
[
g α Fconv 

ρ cP

]1/3

= U
2/3
MAC(Ω )1/3 . (5.25)

Stevenson (2003) has a coefficient 0.3 in this formula. The mixing length estimate
gives somewhat larger values for the velocity than the MAC value.

5.7. NUMERICAL DYNAMO MODELS
FOR THE PLANETS

It is possible to solve the full three-dimensional system of equations (4.5a-d) using
direct numerical simulation. The usual geometry is to consider a spherical shell for
the dynamo region, and to include the effects of rotation. The equations are very
demanding computationally, and many hundreds of processor hours are needed to
obtain solutions even when moderate values of the parameters are used. A dynamo
benchmark (Christensen et al., 2001) has been established to allow researchers to
check the very complex numerical codes used to integrate the equations. In all the
planets, E and qT are extremely small, but in simulations it is difficult to get qT sig-
nificantly below unity, and Ekman numbers below 10−5, without inducing numerical
instability. For comparison, even if a turbulent value of the Earth’s viscosity is used,
E works out at around 10−9. Results from simulations must therefore be treated
with caution. A further difficulty is that most codes use the Boussinesq equations,
whereas the giant planets have large density variations. Despite all these difficulties,
the simulations produce interesting results, and many of the features of the geomag-
netic field can be reproduced, even including field reversals. This is a very active
field of research.

One result emerging from the simulations is that the distribution of the energy source
has an important effect on the type of field generated. Christensen et al. (1999) as-
sumed that the heat source lies inside the dynamo region, so that the dynamo is
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(a) (b)

Figure 5.4 - (a) Shaded contour plots of the radial velocity, ur at an arbitrary
radius r = 0.8 ro. Pr = qT = 1. The minimum and maximum values are
[−295.35, 135.55]. (b) Shaded contour plots of the radial magnetic field, br at
r = ro. Pr = qT = 1. The minimum and maximum values are [−0.9379, 0.9007].
(See colour insert.)

powered by a flux of heat (or buoyancy from compositional convection) entering
the spherical shell from below. They found mostly, but not exclusively, axial dipo-
lar fields. This is the form of field which approximately models that of the Earth,
Jupiter, Saturn and Ganymede. On the other hand, Busse et al. (2003), using models
with uniform heating, found that axial dipoles are not typical. They find quadrupolar
modes, and even hemispherical dynamos in which the field is generated primarily in
one hemisphere. Another factor that can affect the form of the field is the strength
of the heating as measured by the Rayleigh number. Aubert & Wicht (2004) find
that for R̃a not far above critical, equatorial dipole modes can be found. This means
that the dipole is aligned with its axis in the equatorial plane, not parallel to the axis
of rotation. Such a field might be a first approximation to the fields of Neptune and
Uranus.

Another factor which can influence the form and strength of the generated field is
the Prandtl number, Pr = ν/κ. In liquid metals this number is small, though it is
often argued that since the diffusion processes in planetary cores are probably turbu-
lent, a value of PrT = νT/κT = 1 is appropriate. At low Prandtl numbers, inertial
effects are important and the generated fields have a rather complicated morphology,
but at higher Prandtl numbers strong axial dipoles become common (Sreenivasan &
Jones, 2006). At low Pr, the kinetic energy is usually at least as large as the mag-
netic energy in numerical dynamo models. Unless the velocity is much larger in
the Earth’s core than the velocity indicated by the secular variation, which seems

© 2007 by Université Joseph Fourier



280 Christopher JONES

unlikely, the magnetic energy in the core is much larger than the kinetic energy.
With the constraints imposed by numerical stability, the only way to get the ratio
of kinetic to magnetic energy correct in planetary cores is to assume a rather large
Prandtl number. A description of the dynamo process in numerical dynamo models
is given by Olson et al. (1999), but it is not a simple matter to understand why some
models are axial dipole dominated when other models have much more complicated
fields. The flow patterns found in the models usually resemble the cartridge belt
pattern of convection columns predicted by linear theory (see Section 3.4, and also
Roberts, 1968; Busse, 1970; Jones et al., 2000; Dormy et al., 2004). An example
from Sreenivasan & Jones (2006) is shown in Figure 5.4(a), and the corresponding
dynamo generated field in Figure 5.4(b). These figures are a snapshot from a nu-
merical soluxtion of equations (4.5a-d). The parameters are E = 10−4, Pr = q = 1

and R̃a = 750, which is about ten times critical. There are no internal heat sources,
and the radius ratio is 0.35, appropriate to the Earth’s liquid outer core. The veloci-
ties given in the figure caption are in units corresponding to the magnetic Reynolds
number, so the velocities are slightly lower than those expected in the Earth’s core
(where an estimate of 300 – 500 is most usual). The columnar structure expected in
a rapidly rotating fluid is clearly seen in Figure 5.4(a). The magnetic field is shown
at the core-mantle boundary in Figure 5.4(b), and the strong dipole dominance is
immediately apparent.

Yet another factor that may influence the form and strength of the generated fields
is the radius ratio of the dynamo region. It has been suggested (Ruzmaikin &
Starchenko, 1991) that the irregular fields of Uranus and Neptune could be con-
nected with the dynamo region in these planets being comparatively thin. This tends
to generate magnetic fields which are more irregular, with the dynamo process oc-
curring in local patches which are only weakly coupled together, in contrast to the
model in Figures 5.4(a) and 5.4(b), where the convection columns strongly couple
all parts of the dynamo process in the core.

It is clear that the study of numerical dynamo models is still in its infancy, and
there is still much that is not understood even in these mathematically clean ide-
alised models. Nevertheless, our understanding has improved significantly in the
last decade, and it is likely that dynamo theory will become an important part of
planetary science in the years to come.
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CHAPTER 6

STELLAR DYNAMOS

Steven Tobias & Nigel Weiss

6.1. STELLAR MAGNETIC ACTIVITY

Stars that are magnetically active owe this activity to a combination of turbulent con-
vection and rotation. In this review we shall focus on stars like the Sun, which lie
on the main sequence and are sufficiently cool that hydrogen becomes ionised be-
low their surfaces, resulting in the presence of a deep outer convection zone. Their
magnetic fields can be measured directly through the Zeeman broadening of spectral
lines, or inferred from proxy evidence. This is provided by coronal X–ray emission,
by H and K emission from singly ionised Ca+, by photometric variability (associ-
ated with starspots) or by optical and radio flares – all of which are known to be
associated with magnetic activity on the Sun (Tayler, 1997). The Sun is unique,
however, in that we can observe detailed magnetic structures on its surface, and we
have records of its activity extending back through many centuries; its internal struc-
ture is also well-established (see Figure 6.1). On the other hand, the Sun is a single
star whose large-scale properties evolve extremely slowly. So it is only through ex-
ploiting the solar-stellar connection and examining the magnetic properties of other
stars that we can understand how magnetic activity depends on such key parameters
as rotation (Wilson, 1994; Mestel, 1999; Schrijver & Zwaan, 2000).

Chromospheric Ca+ emission has been measured for a large number of nearby stars,
revealing a wide range of activity (Vaughan & Preston, 1980; Soderblom, 1985;
Henry et al., 1996). Comparison of middle-aged stars like the Sun with similar stars
in young clusters shows that magnetic activity declines with age. Moreover, there
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Convection zone

Radiative zone

Core

Figure 6.1 - Internal structure of the Sun. The cutaway image shows the visible
surface (the photosphere, with a radius R� ≈ 700 Mm), together with an outer
region where energy is carried mainly by convection, and an inner region where
energy is transported by radiation. The narrow interface between the convection
zone and the radiative zone, at a radius of approximately 0.7R�, has a thickness of
only 0.02R� and is the site of the tachocline, where there is a strong radial gradient
in angular velocity. The temperature rises from 6000 K at the surface to about 2 ×
106 K at the base of the convection zone and then to 1.5 × 107 K in the central core,

is a strong correlation between activity and rotation (Noyes et al., 1984; Baliunas
& Vaughan, 1985; Saar & Brandenburg, 1999). When stars first arrive on the main
sequence and begin to burn hydrogen they are spinning rapidly (Soderblom, Jones &
Fischer, 2001), with rotation periods of order a day, but they gradually lose angular
momentum to magnetic braking owing (Mestel, 1999) and spin down. It is only
in slowly rotating middle-aged stars like the Sun (with rotation periods of order a
month) that cyclic activity is found (Baliunas et al., 1995). The cycle periods are all
around 10 years: Figure 6.2 shows the time-dependent Ca+ emission in a solar-type
star, exhibiting cyclic variation with a period of 8.2 yr.

The Sun’s own magnetic activity varies cyclically, with an average period of about
11 years (Stix, 2002). The most dramatic manifestation of this activity is in sunspots,
which are dark because they are the sites of strong magnetic fields that locally inhibit
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Figure 6.2 - Cyclic activity in a star. Chromospheric Ca+ emission as a function of
time for the K0 star HD 81809 (Mount Wilson Observatory H-K Project).

convection. The cyclic variation of the incidence of sunspots is demonstrated by the
well-known butterfly diagram in Figure 6.3. Spots typically appear in pairs with
opposite polarity, oriented nearly parallel to the equator. The spots are contained
within active regions, which are formed by the emergence of almost azimuthal (or
toroidal) magnetic flux, whose orientation obeys Hale’s laws. The polarities of lead-
ing and following spots are consistent in each hemisphere but antisymmetric about
the equator; and these polarities reverse from one activity cycle to the next. Hence
the magnetic cycle has a period of 22 years. The axis of a sunspot group or active
region is actually inclined at a small angle so that leading spots are closer to the
equator, and this angle increases systematically with latitude (Joy’s law). This re-
sult, with the large horizontal scale of active regions, suggests that the emerging flux
is deep-seated and not a merely superficial phenomenon.

The arguments for ascribing the origin of these magnetic fields to a dynamo are
different from those for planetary dynamos. Whereas the Earth’s magnetic field has
to be maintained by a geodynamo, since it has been present for billions of years
despite an Ohmic decay time of only 104 yr, the solar problem is to explain how the
field reverses every 11 years when the decay time is 109–1010 yr. It has been claimed
that cyclic behaviour could be driven by an oscillator, with a steady poloidal field and
alternating shears in differential rotation, though no mechanism for producing such
shears has been suggested. In fact, the Sun possesses a large-scale poloidal field that
is most prominent in polar regions and has dipole symmetry, and this field reverses
near sunspot maximum (i.e. 90◦ out of phase with the activity cycle). Furthermore,
the only observed fluctuations in angular velocity have a period of 11 years, not
22 years, and an 11-yr periodicity is precisely what is expected from a nonlinear
dynamo, since the Lorentz force is quadratic in the magnetic field. We may therefore
assume that this cyclic solar activity is maintained by a large-scale homogeneous
dynamo, which generates systematic fields (magnetic climate) as opposed to the
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Figure 6.3 - Cyclic activity in the Sun (1874–2004). (a) butterfly diagram, showing
the incidence of sunspots as a function of latitude and time; new spots appear at
±30◦ as the old cycle dies away at the equator. (b) area covered by sunspots as a
function of time (courtesy of D.H. Hathaway).

small-scale disordered fields (magnetic weather) which could be produced by local
dynamo action near the photosphere.

The current state of solar dynamo theory forces most of our discussion to be physical
rather than mathematical, backed up by numerical rather than by analytical results.
In the next two sections we introduce mean field (αω) dynamos for the solar cy-
cle. Then, in Section 6.4, we focus on dynamos located at the interface between
the convective and radiative zones, where the radial shear is greatest. Long-term
modulation of cyclic activity is the subject of Section 6.5. Next, in Section 6.6, we
consider the enhanced activity in rapidly rotating stars and go on to comment briefly
on dynamos in protostellar accretion discs. Finally, we summarise future prospects
for stellar dynamo theory. Many of these issues have already been discussed in
various recent reviews (e.g. Stix, 1991; Weiss, 1994; Rosner, 2000; Tobias, 2002a;
Choudhuri, 2003; Ossendrijver, 2003, Rüdiger & Arlt, 2003).

6.2. LINEAR αω–DYNAMOS
FOR THE SOLAR CYCLE

A proper treatment of the solar dynamo would require an accurate simulation of
the nonlinear interactions between rotation, convection and magnetic fields. Direct
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numerical simulation of these processes in a regime where the magnetic Reynolds
number Rm ≈ 109 remains beyond the capacity of the largest computers and, in any
case, the key physical mechanisms of differential rotation, helicity and magnetic
buoyancy are not adequately understood. Apart from some early brave attempts
(Gilman, 1983; Glatzmaier, 1985), stellar dynamo theory has had to rely on the
mean field approximation (discussed in Section 1.5).

Since differential rotation is so effective at creating toroidal fields, nearly all stellar
models are axisymmetric αω–dynamos. Then the poloidal field BP = ∇ × (Aeφ)
and the toroidal field BT = Bφeφ satisfy the linear equations

∂tA = αBφ + ηD2A , ∂tBφ = r sin θ BP · ∇ω + ηD2Bφ , (6.1a,b)

referred to spherical polar co-ordinates, where ω is the local angular velocity, η here
denotes the total (laminar plus turbulent) diffusivity and D2 = Δ − 1/r2 sin2 θ.

6.2.1. DYNAMO WAVES

Parker (1955, 1979) provided the simplest (and earliest) example of a mean field
dynamo. He considered a Cartesian model with A, B ∝ exp(i k x), where the x–
direction corresponds to increasing θ and U(z) represents the sheared zonal velocity
with z corresponding to a local radial co-ordinate. He showed that there was ex-
ponential growth when the dynamo number (see Section 1.5.3), D = αU ′/(2η2k3),
was greater in magnitude than unity (prime is used to note a derivative, i.e. U ′ =
dU(z)/dz). The waves travel “equatorward” if D < 0. This result from a relatively
simple model has had a profound effect on stellar dynamo theory; it is now widely
claimed that dynamo waves always travel poleward if D > 0. However this is not
always the case (although often true) and some solar dynamo models are able to re-
produce equator-propagating magnetic fields even for D > 0. This result can readily
be extended to other geometries and, more generally, the waves travel along surfaces
of constant ω.

It is important to realise that the local behaviour of travelling waves with periodic
boundary conditions may differ qualitatively from the global behaviour of solutions
that are spatially confined, whether in Cartesian or in spherical geometry. For linear
theory, this corresponds to the difference between convective and absolute instability
(Tobias et al., 1998b). For waves of frequency ω and wavenumber k, governed by
the dispersion relation

ω(k; D) ≡ 0 , (6.2)

instability in an infinite (or periodic) domain occurs at the smallest value of D that
satisfies the dispersion relation for some real k. It is possible therefore to generate a
marginal curve of Dcrit versus k (Worledge et al., 1997). In a finite domain of length
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Table IV - Some orders of magnitude for the solar dynamo.

Solar radius R� 6.96 × 108 m

Solar mass M� 1.99 × 1030 kg

Surface temperature 5780 K

Central temperature 15.6 × 106 K

Surface density 2.0 × 10−4 kg m−3

Central density 1.5 × 105 kg m−3

Solar age 4.57 × 109 yr

Large scale magnetic field strength 5 × 104 nT (0.5 G)

Diameter of surface granulation L 106 m

Sunspot magnetic field strength 0.3 T (3000 G)

Rotation time at equator 25 d

Rotation time at 60o latitude 29 d

Ekman number, base of the c.z. E ν/ΩR2
� O(10−15)

photosphere O(10−17)

Rossby number, base of the c.z. Ro |u|/ΩR� O(10−2)

photosphere |u|/ΩL O(103)

Prandtl number, base of the c.z. Pr ν/κ O(10−6)

photosphere O(10−13)

Magnetic Prandtl number, base of the c.z. Pm ν/η O(10−1)

photosphere O(10−7)

Reynolds number, base of the c.z. Re |u|R�/ν O(1013)

photosphere |u|L/ν O(1013)

Magnetic Reynolds number, base of the c.z. Rm |u|R�/η O(1011)

photosphere |u|L/η O(106)

L, instability of a global mode is governed by a more stringent condition. In the
limit L → ∞, this condition approaches that for absolute instability of a periodic
wavetrain; that is both (6.2) and the condition ∂ω/∂k = 0 must be satisfied simulta-

Generation Approach (MEGA, see Ruzmaikin et al., 1990), as explained in detail
in the Appendix of Bassom et al. (2005). The two criteria for periodic and finite
domains yield very different critical dynamo numbers and frequencies. Moreover,
nonlinear behaviour can be qualitatively affected (Tobias 1998), with the frequency
in the nonlinear regime being determined by the interaction of the global mode with
the boundaries, and the possible presence of secondary absolute instabilities.
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6.2.2. SPHERICAL MODELS

The spherical problem possesses two important symmetries with respect to reflec-
tion about the equator. The governing equations (6.1a,b), with appropriate boundary
conditions and suitable constraints on α and ω, are invariant under the transforma-
tions

d : (θ, t) → (π − θ, t), (A, B) → (A, −B) (6.3a)

and
q : (θ, t) → (π − θ, t), (A, B) → (−A, B) . (6.3b)

These symmetries generate an abelian group (D2) with four elements, including
i = dq : (θ, t) → (θ, t), (A, B) → (−A, −B) and the identity (Jennings &
Weiss, 1991). The trivial solution A = B = 0 possesses the full D2 symmetry,
which is broken at the initial Hopf or pitchfork bifurcation. The linear problem then
allows two distinct families of eigenfunctions, with different symmetries about the
equator. For dipole solutions, with the symmetry d, the toroidal field B is antisym-
metric about the equator, while A is symmetric; for quadrupole solutions, with the
symmetry q, A is antisymmetric and B is symmetric. If an appropriate dynamo
number is defined by setting D = αω′R4

�/η2, where R� is the solar radius, then the
critical values of D at which dipolar and quadrupolar modes become unstable differ
only slightly. Provided that D < 0 in the northern hemisphere, oscillatory dipole
modes are marginally favoured and the pattern drifts equatorward. Thus it is easy to
construct butterfly diagrams that are qualitatively similar to that in Figure 6.3 (Steen-
beck & Krause, 1969; Stix, 1976, 2002). Note that the symmetry of one or other
of these solutions can only be broken at a subsequent bifurcation in the nonlinear
domain. If this happens at a pitchfork bifurcation, further symmetries of periodic
solutions can be classified (Jennings & Weiss, 1991) but symmetry–breaking more
commonly involves a Hopf bifurcation that leads to quasiperiodic behaviour.

6.2.3. THE ω–EFFECT

It has long been known that the angular velocity varies with latitude at the surface of
the Sun: the equatorial regions rotate distinctly more rapidly (with a sidereal period
of 25 days) than the poles (with a period of about 35 days). More recently, one of
the triumphs of helioseismology has been the determination of the Sun’s internal ro-
tation (Thompson et al., 2003). Measurements of p–mode frequencies have revealed
that there is very little radial shear in the convection zone, where ω ≈ ω(θ), while
ω is nearly uniform in the radiative interior. Between the two is a thin layer (with
thickness around 0.02R�) with a very strong radial shear, the tachocline. This ob-
served pattern of differential rotation is displayed in Figure 6.4; since the radiative
core rotates at an intermediate rate, ∂ω/∂r changes sign at a latitude around 30◦ .
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Figure 6.4 - Differential rotation in the solar interior. The rotation rate is approxi-
mately constant along radii in the convection zone, whose base is indicated by the
dashed line. A frequency of 450 nHz corresponds to a period of about 26 days

The dynamics within the tachocline is not yet understood (Tobias, 2004) but it is
generally accepted that strong toroidal fields are generated and stored within this
region of shear.

6.2.4. THE α–EFFECT

The source of the α–effect is much less clear. The earliest treatments assumed that
poloidal fields were regenerated by cyclonic eddies that were distributed through-
out the convection zone and that α (which is antisymmetric about the equator) re-
verses its sign in such a way that D < 0 at the base of the convection zone in the
northern hemisphere (Parker, 1979; Krause & Rädler, 1980). Some recent authors
have revived a surface flux-transport model due originally to Babcock (1961) and
to Leighton (1967), in which the α–effect is ascribed to the decay, through turbu-
lent diffusion, of active regions whose orientation is determined by Joy’s law. The
opposing fields of leading spots cancel out as they approach the equator, while the
trailing fields of following spots spread polewards and eventually reverse the po-
lar fields at sunspot maximum. In that case, the amplitude of the activity cycle
should determine the strength of the high-latitude poloidal field at the next sunspot
minimum. This can be checked by studying the incidence of recurrent geomagnetic
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activity, caused by high-speed streams emerging from coronal holes. Detailed inves-
tigations show that the toroidal fields at sunspot maximum are more closely related
to the mid-latitude poloidal fields that precede them than to those that follow after-
wards (Simon & Legrand 1986; Hathaway, Wilson & Reichmann 1999; Ruzmaikin
& Feynman 2001). This evidence implies that flux transport is only a superficial
process.

The dynamo is obviously more efficient if the α–effect is located near the base of
the convection zone, where the ω–effect is strong. Indeed, Mason, Hughes & To-
bias (2002) have shown that the influence of a surface source in generating dynamo
waves is swamped by that of a much weaker α near the tachocline. There are several
buoyancy-driven mechanisms that might provide the latter. These include magne-
tostrophic waves (Moffatt, 1978; Schmitt, 1987), instabilities of flux tubes (Ferriz-
Mas, Schmitt & Schüssler, 1994; Ossendrijver, 2000b) and instabilities driven by
magnetic buoyancy (Brandenburg & Schmitt, 1998; Thelen, 2000a, b), These last
have been studied in considerable detail (see Hughes & Proctor, 1988; Tobias, 2004)
in both the linear and nonlinear (Matthews, Hughes & Proctor, 1995; Wissink et al.,
2000) regimes, and their interactions with rotational shear have also been explored
(Cally, 2000; Hughes & Tobias, 2001; Cline, Brummell & Cattaneo, 2003; Tobias
& Hughes, 2004). Another possible source of kinetic helicity arises from MHD
instabilities associated with differential rotation within the tachocline, which have
been studied and classified (e.g. Gilman & Fox 1999; Cally, 2001, 2003; Gilman &
Dikpati, 2002; see Tobias, 2004 for a review).

These instabilities are joint instabilities of the strong toroidal field and latitudinal
differential rotation just below the base of the solar convection zone. The global
mode associated with the instability is known to possess non-zero kinetic helicity
which may be related to the α–effect. However, this connection can only be reliably
achieved in a small Rm analysis and for high Rm a straightforward association
between kinetic helicity and α–effect is not possible (see Courvoisier, Hughes &
Tobias, 2006).

One feature of these instabilities is that they are triggered by a finite-amplitude
toroidal field, which itself has to be built up by dynamo action following a super-
critical bifurcation; once the buoyancy driven instabilities set in the dynamo can
become much more efficient. Thus the branch of nonlinear dynamo solutions may
have two turning points, with an intermediate segment of unstable solutions, leading
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Figure 6.5 - Downward pumping of magnetic flux. Results for a horizontal field,
initially in the y–direction and confined to a thin sheet, in a strongly stratified layer.
(a) The field 〈By〉, averaged horizontally and over time, as a function of depth in a
vigorously convecting layer (courtesy of N.H. Brummell). (b) Evolution with time
of 〈By〉 when the convecting layer lies above a layer that is strongly stably stratified;
magnetic flux is expelled into the stable region (after Tobias et al., 2001).

6.2.5. MAGNETIC PUMPING

In addition to producing turbulent diffusion and regenerating large-scale fields by the
α–effect, turbulent motion can also lead to net transport of magnetic fields. In mean
field electrodynamics this is represented by the antisymmetric part of the α–effect
(αa

ij = εijkγk). Physically, this corresponds to flux expulsion down the gradient of
turbulent intensity and γ can be calculated and interpreted as a pumping velocity
(Krause & Rädler 1980; Zeldovich, Ruzmaikin & Sokoloff, 1983; Moffatt, 1983).
In Boussinesq convection, with up-down symmetry flux is expelled equally towards
the top and bottom of the convecting layer. In a stratified layer, however, there is a
preferred direction which leads to a net downward transport of magnetic flux. Two
distinct mechanisms are involved. For mildly nonlinear convection there are isolated
gentle upflows enclosed by a coherent network of downflows and this pattern can
give rise to topological pumping (Drobyshevski & Yuferev, 1974). In turbulent
convection the sinking network is focused into rapidly descending plumes and this
pattern leads to a net downward transport (Weiss, Thomas, Brummell & Tobias,
2004), as illustrated in Figure 6.5a. This process becomes much more effective when
there is a stably stratified region beneath the convectively unstable layer as shown
in Figure 6.5b (Tobias et al., 1998a, 2001; Dorch & Nordlund 2001). It follows that
any large-scale fields within the convection zone will tend to be pumped downwards
and into the stably stratified tachocline, where they can accumulate within an even
thinner shell that is penetrated by overshooting convection.
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6.2.6. MERIDIONAL CIRCULATION

There is a mean meridional flow at the solar surface, moving poleward in each hemi-
sphere with a typical speed of about 10 m s−1 (Hathaway, 1996), though this pattern
is erratic. Helioseismic inversions indicate that this flow extends downwards through
at least the upper half of the convection zone (Braun & Fan, 1998) and mass con-
servation then requires that there should be an equatorward counterflow at its base,
where the density is much higher and the velocity correspondingly less. Neverthe-
less, a flow speed of 1 m s−1 (if attainable) would be enough to traverse the sunspot
zone within 11 years, and such a counterflow has been invoked as a conveyor belt
to explain the equatorward drift of activity as the cycle progresses (see Choudhuri,
2003). [This idea actually goes back to Bjerknes (1926) and Bullard (1955), who
postulated a flow towards the equator at the photosphere.] It has also been suggested
that this conveyor belt transports poloidal flux generated by a surface α–effect all the
way down to the tachocline, where it can be stretched out to form a strong toroidal
field (Dikpati & Charbonneau, 1999). Later, more elaborate calculations show, how-
ever, that any realistic dynamo model requires a powerful source of poloidal flux at
the base of the convection zone (Dikpati et al., 2004).

6.3. NONLINEAR QUENCHING MECHANISMS

Kinematic growth of the oscillatory field is eventually limited by the nonlinear ac-
tion of the Lorentz force. Within the mean field approximation this is most easily
represented by quenching the α–effect, in the simplest case by setting [see also
(2.51), page 82]

α =
α0

1 + |B|2/B2 , (6.4)

where B is, say, the equipartition field strength (such that B2 = μo〈ρ|u|2〉, where u is
the turbulent velocity). This formalism is extremely convenient and has been widely
used, although there are strong reasons for believing that α–quenching is much more
drastic, and that (6.4) should be replaced, for instance, by [see also (2.74), page 95]

α =
α0

1 + Rmγ |B|2/B2 , (6.5)

with 0 < γ ≤ 2 (see Section 2.7 and Vainshtein & Cattaneo, 1992; Diamond,
Hughes & Kim, 2004). In the Sun, this would imply that α is quenched when the
mean field B is less than 1 G, which would be disastrous for a dynamo. Analo-
gous (and equally contentious) arguments suggest that the turbulent diffusivity η
should be similarly quenched. A proper understanding of the transport coefficients
of mean-field theory in both the kinematic and nonlinear regimes is essential (see
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Figure 6.6 - Torsional oscillations with an 11–year period near the solar surface,
derived from p–mode splitting measured with the GONG network (GONG RLS,
r = 0.99R�). Zones of slightly more rapid rotation progress towards the equator

Section 2.7 for an in-depth discussion). This remains a controversial issue, though
one of fundamental importance for stellar dynamos.

An alternative is to let the Lorentz force limit differential rotation. Here there are
two possibilities, depending on whether microdynamic or macrodynamic effects are
more important. If we regard the overall differential rotation as being driven by the
impact of Coriolis forces on small-scale turbulence – the Λ–effect (see page 89 and
Rüdiger, 1989; Rüdiger & Arlt, 2003) – then Λ–quenching depends on the micrody-
namic balance between Maxwell and Reynolds stresses (see page 89 and Rüdiger &
Kitchatinov, 1990; Kitchatinov, Rüdiger & Küker, 1994). If, on the other hand, the
shear is concentrated in the tachocline (or maintained by large-scale motion in the
convection zone) it is appropriate to consider the the rotational effect of the couple
exerted by the macrodynamic Lorentz force (Malkus & Proctor, 1975). As we have
already pointed out, this Malkus–Proctor effect generates a secondary flow with
twice the frequency of the magnetic cycle. Moreover, that is just what is observed,
as so-called “torsional oscillations” with an 11–year periodicity, at the solar surface
– see Figure 6.6 (Howe et al., 2000a). That suggests that the dynamo equations
(6.1a,b) should be augmented by adding a third equation for the evolution of ω (the
large-scale angular velocity), in which the magnetic torque competes with turbulent
“viscous” damping.
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The remaining possibility is that kinematic growth is saturated by flux loss from
the dynamo domain; magnetic flux simply rises, owing to magnetic buoyancy, and
escapes through the surface of the Sun. This is not straightforward, since plasma is
tied to the field lines: for instance, axisymmetric toroidal flux can only be lost if a
flux ring kinks and reconnects to form a band of loops that can decay diffusively.
The role of magnetic helicity (whether large-scale at the tachocline, or small-scale
in the convection zone) also becomes important in this context (see Ossendrijver,
2003).

6.4. INTERFACE DYNAMOS

Solar magnetic fields can only be measured at the photosphere and in the atmosphere
above it; the magnetism of the Sun’s interior has to be inferred from theory. Hence it
is important to distinguish primary properties of the solar dynamo (notably the cyclic
eruption of toroidal fields) from secondary properties of the surface fields. The latter
– termed epiphenomena by Cowling (1975) – include the decay of active regions
and perhaps even the observed reversals of the polar fields. As already stated, the
scale and systematic properties of the toroidal fields that emerge in sunspots indicate
that they must be formed deep down in the interior. Any such fields within the
convection zone would be magnetically buoyant and would rise to the surface within
a month. So it seems clear that the toroidal field must be stored at the interface
between the convective and radiative zones, where it can be pumped downwards
into the tachocline. Moreover, that is just where azimuthal fields are most readily
generated by differential rotation.

It is not difficult to construct plausible mean field models with suitably chosen dis-
tributions of ω and α. Parker (1993) realised that catastrophic α–quenching could
be avoided if the α– and ω–effects were spatially separated. Thus he introduced an
interface dynamo model, with the shear confined to the tachocline, where α = 0,
and an α–effect in the lower part of the convection zone, where the toroidal field is
small. Moreover the turbulent diffusivity responsible for allowing the spatially sepa-
rated regions to communicate had a similar radial dependence to the α–effect, being
large in the convection zone and small in the tachocline. His linear Cartesian model
showed that dynamo waves could be maintained and he noted that the toroidal field
was confined to a thin layer just below the interface. Parker also realised that the
toroidal field strength was related to the ratio of the diffusivities in the tachocline
and the convection zone. He proposed that the interface scenario would be consis-
tent in the nonlinear regime if both the transport coefficients (α and η) were strongly
quenched by the magnetic field.
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Figure 6.7 - (a) An analytical fit to the measured solar differential rotation, showing
abrupt variation at the tachocline, near a radius of 0.7R�. (b) Cyclic toroidal fields
at the base of the convection zone: a butterfly diagram for a nonlinear interface
dynamo with the field limited by α–quenching, and an α–effect that is concentrated

Nonlinear solutions were later computed by Tobias (1997a) for a range of quenching
mechanisms. The model was subsequently extended to describe global behaviour,
subject to lateral boundary conditions corresponding to the poles and the equator
– see Section 6.4.2 below (Tobias, 1996, 1997b).

6.4.1. SPHERICAL INTERFACE MODELS

The most straightforward way of representing the solar dynamo is to construct an
analytical fit to the pattern of differential rotation determined by helioseismology,
coupled with a suitably chosen form for α(r, θ), which has to be antisymmetric about
the equator, and then to adopt the α–quenching expression (6.4). This was done by
Charbonneau & MacGregor (1996), who also demonstrated that it was possible to
attain toroidal fields of equipartition strength in an interface configuration even if α
was strongly quenched, using the expression (6.5). The same procedure has been
followed by Markiel & Thomas (1999) and by Bushby (2004, 2005). Figure 6.7a
shows the simplified form adopted for ω(r, θ) in the latter calculation. The strong
radial shear changes sign at mid-latitudes and butterfly diagrams show a poleward
branch as a result. It follows that α has to be concentrated near the equator in order
to produce a butterfly diagram with a dominant equatorward branch that resembles
what is observed; Figure 6.7b shows an example calculated with α ∝ cos θ sin4 θ
(Bushby, 2004). This enhancement of the α–effect at low latitudes argues strongly
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Figure 6.8 - Zonal shear flows extending throughout the convection zone. Results
from the inversion of SOHO MDI data by Vorontsov et al. (2002), showing bands
of slightly more rapid motion diverging from mid-latitudes as the activity cycle pro-

in favour of magnetic buoyancy instabilities as its source. (The alternative of an
equatorward meridional flow would damage the weaker poleward branch.)

Other nonlinear quenching mechanisms are able to yield qualitatively similar results.
Microdynamic Λ–quenching has been successfully modelled both by Küker, Arlt &
Rüdiger (1999) and by Pipin (1999). Similarly, the macrodynamic Malkus–Proctor
effect has been used e.g. by Covas et al. (2000). The advantage of this last approach
is that it automatically generates zonal flows that can be compared with those that
are observed.

6.4.2. ZONAL SHEAR FLOWS

The “torsional oscillations” that have been directly measured at the solar surface
(Ulrich et al., 1988; Howe et al., 2000a) can be followed deep into the convection
zone by measuring the rotational splitting of p–mode frequencies (Vorontsov et al.,
2002; Thompson et al., 2003). Figure 6.8 shows a ten–year dataset (Thompson
et al., 2003) with twin bands of marginally more rapid rotation accompanying the
sunspot zones towards the equator. (The effect is small, around 0.01ω, but definitely
present.) There is an even more prominent pair of bands that migrate simultaneously
towards the poles. It should be emphasised that these zonal shear flows (Kosovichev
& Schou, 1997) are a robust deduction from the helioseismic data: moreover, the
zonal flows certainly extend through at least the outer third of the convection zone
and probably penetrate to its base (Vorontsov et al., 2002).
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Figure 6.9 - A nonlinear interface dynamo with activity limited by the macrody-
namic Malkus–Proctor effect. (a) Butterfly diagram, showing poleward and equa-
torward branches. (b) Zonal shear flows at the base of the convection zone, again

The cyclic behaviour of the zonal shear flows indicates that they must be driven
by the quadratic Lorentz force (Schüssler, 1981; Yoshimura, 1981). This can be
modelled as a consequence of the macrodynamic Malkus–Proctor effect (Belvedere,
Pidatella & Proctor, 1990; Covas et al., 2000; Bushby, 2004). Figure 6.9a shows
an idealised butterfly diagram with both a strong equatorial branch and a weaker
polar branch. The corresponding zonal shear flows are displayed in Figure 6.9b
(Bushby, 2004, 2005). Some similar calculations (Covas, Tavakol & Moss, 2001b;
Tavakol et al., 2002) have a richer structure, with phase shifts near the base of the
convection zone (“spatiotemporal fragmentation”) that have been tentatively linked
to possible variations in ω with a shorter period (1.3 yr) at the base of the convection
zone (Howe et al., 2000b).

The obvious location of the magnetic couple that generates fluctuations in zonal
angular momentum is at the tachocline, where strong toroidal fields are created.
Yet the variations in ω are largest at the photosphere, where the “torsional oscilla-
tions” were originally detected. This can be explained as resulting from the large
decrease in density with radius across the convection zone. Nonlinear dynamo mod-
els that include strong stratification (Covas, Moss & Tavakol, 2004) do indeed have
zonal shear flows whose magnitude increases outwards towards the surface of the
Sun (Bushby, 2004, 2005). Moreover, the zonal flows derived from helioseismic
measurements show a definite lag in phase that increases with increasing radius
(Vorontsov et al., 2002). This confirms that these fluctuating flows are driven from
below rather than from above.
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6.5. MODULATION OF CYCLIC ACTIVITY

The butterfly diagram in Figure 6.3 is nearly symmetric about the equator but the
sunspot record is definitely not periodic. The extended timeseries in Figure 6.10a
(lower curve) shows the group sunspot number, a measure of solar activity estab-
lished by Hoyt & Schatten (1998), running back from the present day to the first
telescopic observations by Galileo and Scheiner in 1610. The most striking feature
is the dearth of sunspots between 1645 and 1715 – the Maunder Minimum (Eddy,
1976). That this effect was real and not due to inadequate observations is amply
confirmed by the contemporary records at the Paris Observatory (Ribes & Nesme-
Ribes, 1993). Since then, the amplitude of the activity cycles has varied irregularly,
with another marked dip around 1800 (the Dalton Minimum).

Fortunately, there are proxy data that extend the record back for many thousands
of years. Galactic cosmic rays are deflected by magnetic fields in the solar wind
and there is therefore a well-established anti-correlation between solar activity and
the incidence of cosmic rays on the Earth’s atmosphere. The cosmic rays lead to
the production of cosmogenic isotopes such as 14C (which is stored in tree rings
after circulating for about 30 years in the atmosphere) and 10Be (which descends in
rain or snow and is preserved in polar icecaps). Because of its importance in age
determination, the 14C record has been closely studied and variations in abundance
provide a smoothed record of solar activity extending for about 10,000 years into
the past (Stuiver & Braziunas 1993; Stuiver et al., 1998). The 11–year activity cycle
shows up clearly in 10Be abundances, which are anti-correlated with solar activity,
as can be seen from Figure 6.10a; note that weaker cycles persisted throughout the
Maunder Minimum (Beer, Tobias & Weiss, 1998). Longer term variability has been
measured from abundances in polar ice cores dating back to 50,000 years BP, yield-
ing the production rates in Figure 6.10b. The corresponding power spectrum, in
Figure 6.10c, shows a sharp peak at a period of 205 yr (also present in the 14C data)
which almost certainly has a solar origin, as well as hints of longer periodicities
(Wagner et al., 2001). These records demonstrate that grand minima, of which the
Maunder Minimum is the most recent example, are a regular feature of solar activity,
associated with a characteristic timescale of about 200 years. Nor is the Sun unique
in this respect: there are examples of almost identical stars, of which one is active
while the other is quiescent, and it has been estimated that between 10% and 30%
of all stars are undergoing a grand minimum at any time (Baliunas & Jastrow, 1990;
Henry et al., 1996).

Any theoretical explanation of this modulation must explain not only the occurrence
of grand minima but also the persistence of the 205–year periodicity in the data
(Tobias, 2002b). The simplest assumption is that this behaviour has a stochastic
origin. For instance, the effect of large fluctuating fields may be to add stochastic
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Figure 6.10 - Modulation of the solar activity cycle.
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fluctuations, which are indubitably present, to the α–effect (Hoyng, 1988; Ossendri-
jver & Hoyng, 1996) and these could reduce the dynamo number below its critical
value so that magnetic activity is switched off. This presumes, of course, that the
dynamo number is never far above the critical value, which seems unlikely for the
Sun and even less likely for other stars. In another version, with a surface α–effect
and a meridional flow, the conveyor belt is stochastically disturbed in order to pro-
duce modulation (Charbonneau & Dikpati, 2000). Schmitt, Schüssler & Ferriz-Mas
(1996; see also Ossendrijver, 2000a) introduced a more sophisticated process: in
their dynamo model, there are two contributions to the α–effect. The dynamic α–
effect, which leads to cyclic activity, is produced by instabilities of toroidal flux
tubes at the base of the convection zone, which only set in after the field exceeds
some critical strength. If a combination of nonlinear and stochastic effects reduces
the field strength below this critical value, the dynamo is switched off, and it remains
quiescent until the stochastic α–effect lifts the poloidal and toroidal fields above the
critical value once again. More generally, stochastic fluctuations are bound to be-
come significant if the systematic fields fade away. Nevertheless, the weakness of
these stochastic mechanisms is that they cannot readily explain the persistent 205–
year frequency of modulation that is observed in the Sun.

6.5.1. DETERMINISTIC MODULATION

The alternative is that temporal modulation of cyclic activity is a natural feature
of nonlinear dynamos. The claim here is that as the dynamo number is increased
there are transitions, in a wide variety of nonlinear models, first to cyclic activ-
ity, then to periodically modulated (quasiperiodic) cycles and finally to chaotically
modulated activity, and that this pattern is generic (Tobias, Weiss & Kirk, 1995).
This bifurcation sequence is most conveniently modelled by including a dynamic
coupling of the magnetic fields to the velocity through the macrodynamic Malkus–
Proctor effect, thereby introducing an additional viscous timescale and increasing
the order of the system. (This can be achieved in various other ways: for instance,
Yoshimura (1978) introduced an explicit time-delay in order to obtain periodic and
aperiodic modulation.) The simplest demonstration (Tobias 1996, 1997b) is in two-
dimensional Cartesian geometry, with a shear velocity

v = V (z) sin(πx/2L) + u(x, z, t) , (6.6)

when the linear equations (6.1a,b) are replaced by the nonlinear system
∂A

∂t
= α(z) cos

(πx

2L

)
+ ηΔA , (6.7a)

∂B

∂t
= D

{[
V ′ sin

(πx

2L

)
+

∂u

∂z

]
∂A

∂x
−

[
π

2L
V cos

(πx

2L

)
+

∂u

∂x

]
∂A

∂z

}
+ ηΔB ,

(6.7b)
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and
∂u

∂t
= sgnD

(
∂B

∂z

∂A

∂x
− ∂A

∂z

∂B

∂x

)
+ νΔu . (6.7c)

These equations are solved subject to boundary conditions A = B = u = 0 at
z = −1, ∂zA = B = ∂zu = 0 at z = 1, while A = B = u = 0 at x = 0, 2L (the
poles). The variables A, B, u can then be expanded in Fourier sine series, which
greatly facilitates computation. For an interface model, α drops smoothly from unity
to zero as z ↓ 0, while V → 0 as z ↑ 0.

Bifurcations from the trivial solution then give rise to two distinct families of solu-
tions with different symmetries about the equator (x = L). For the dipole (antisym-
metric) solutions, ∂xA = B = ∂xu = 0 at x = L; for the quadrupole (symmetric)
solutions, A = ∂xB = ∂xu = 0 at x = L. For D < 0, so that dynamo waves travel
towards the equator, the initial bifurcation is to a dipole mode, closely followed by
a quadrupole. A nonlinear solution will be confined to the dipole or quadrupole
subspace unless its symmetry is broken at a bifurcation.

Tobias (1996) imposed dipole symmetry and showed that, as |D| was increased with
Pm = ν/η � 1, the initial Hopf bifurcation (giving rise to periodic oscillations
and trajectories that are attracted to limit cycles in the phase space of the system)
was followed by a secondary Hopf bifurcation, leading to quasiperiodic behaviour
(with periodically modulated cycles and trajectories that lie on a two-torus in the
phase space). The modulation period apparently varies as Pm−1/2. If |D| is further
increased the two-torus eventually gives way to a chaotic attractor. Frequency anal-
ysis of such a chaotic system can nevertheless pull out periodicities that correspond
to the periods of the unstable periodic and quasiperiodic orbits that are embedded
in the chaotic attractor. We conjecture that the 205–year periodicity in the 14C and
10Be records, which seem to be aperiodic, corresponds to a period of such a “ghost
attractor”.

Relaxing the symmetry constraint naturally allows a much richer variety of be-
haviour (Tobias, 1997b; Brooke, Moss & Phillips, 2002; Phillips, Brooke & Moss,
2002). It is convenient, following Brandenburg et al. (1989), to introduce the total
magnetic energies Ed and Eq associated, respectively, with the dipole and quadrupole
components of the toroidal field, and to define the parity P = (Eq −Ed)/(Eq +Ed).
Thus P = 1 for a pure quadrupole field and P = −1 for a pure dipole. Tobias
(1997b) once again explored behaviour as |D| was increased, with Pm = 0.1; it
is instructive to follow the bifurcation sequence, although the detailed pattern of
transitions is clearly model-dependent. The initial Hopf bifurcation leads to peri-
odic cycles with P = −1 but stability is transferred to quadrupole cycles (with
P = +1) via an intermediate branch of quasiperiodic mixed-mode solutions (with
−1 < P < 1). The periodic quadrupole solutions then undergo a Hopf bifurcation
giving rise to weakly modulated cycles; following a symmetry–breaking pitchfork
bifurcation, stability is gained by a branch of mixed-mode quasiperiodic solutions
and then transferred to quasiperiodic dipoles. The modulation becomes increasingly
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Figure 6.11 - Grand minima in a nonlinear αω–dynamo model in Cartesian geome-
try. Variation of the toroidal magnetic energy 〈|B|2〉 with time, showing modulated
cyclic activity, from a calculation with the macrodynamic Malkus–Proctor effect
(Pm = 0.025, D = −1100) and mild α–quenching (after Beer et al., 1998).

prominent as |D| is further increased, until a new effect appears. Trajectories spend
most of the time very close to the dipole subspace but in a grand minimum, when
the field is very weak and Ed is extremely small, a small quadrupolar component
causes P to deviate perceptibly from −1. This symmetry change becomes much
more noticeable for yet higher values of |D|.
Figure 6.11 shows the variation of the magnetic energy, 〈|B|2〉 = (Eq + Ed), for a
short stretch of time including two grand minima, with parameters chosen to match
the behaviour of the Sun, as revealed by the 10Be measurements in Figure 6.10 (Beer

that the field shows dipole symmetry when the cycles are most active but that this
symmetry is distinctly broken as the dynamo emerges from a grand minimum, when
all the activity is confined to one “hemisphere”. That is precisely what happened
at the end of the Maunder Minimum (Ribes & Nesme-Ribes, 1993). None of the
dozen or so spots observed between 1680 and 1700 was in the northern hemisphere;
when the first sunspot cycle reappeared in 1702, all the spots were in the south-
ern hemisphere and it was only after 1714 that activity spread to both hemispheres
as usual. This preference for hemispheric behaviour has been analysed by Bushby
(2003a). A similar symmetry breaking is seen during reversals in geodynamo simu-
lations (Glatzmaier & Roberts, 1995): when the field reverses the dipole field passes
through zero and higher multipoles predominate.

Here the cycles enter a deep grand minimum with parity P = −1
but emerge from it with P = +1. Apparently the dynamo can flip from dipole
to quadrupole symmetry (and back again) during grand minima. Figure 6.13a il-
lustrates this process by projecting the trajectory in phase space onto the three-
dimensional space spanned by Ed, Eq and the mean square velocity 〈|u|2〉. Cycles,
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et al., 1998). The corresponding butterfly diagram is illustrated in Figure 6.12a: note

Even more striking is the butterfly diagram, for the same parameter values, in Fig-
ure 6.12b.
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Figure 6.12 - Butterfly diagrams with grand minima, for the same parameters as
Figure 6.11. (a) The interval covered in Figure 6.11, showing loss of dipole sym-
metry as the cycles emerge from grand minima. (b) A later sequence, in which the
solution flips from dipole to quadrupole symmetry during a grand minimum (after

modulation and flipping are all apparent in this phase portrait. What these results
clearly show is that the parity of a stellar magnetic field is likely to change as the
star evolves and spins down: the fact that the Sun has exhibited dipole symmetry for
the past 300 years does not preclude its having had quadrupole or mixed symmetry
in the past, or flipping symmetry in the future.

Although the bifurcation sequences appear most clearly in these Cartesian mod-
els, grand minima have also been found in various spherical dynamo calculations,
with nonlinear growth limited by microdynamic (Λ–quenching) or macrodynamic
(Malkus–Proctor) processes (Küker, et al., 1999; Pipin, 1999; Kitchatinov et al.,
1999; Bushby, 2004). A qualitatively different type of modulation appears in mod-
els with algebraic or dynamic α–quenching, as well as in some with Λ–quenching,
where there are major fluctuations in parity without grand minima in the magnetic
energy 〈|B|2〉 (Brandenburg et al., 1989; Kitchatinov, Rüdiger & Küker, 1994;
Brooke et al., 1998; Tworkowski et al., 1998). Thus it is possible to distinguish
two extreme forms of modulation: in Type 1 modulation there are parity changes
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Beer et al., 1998). (See colour insert.)
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Figure 6.13 - Phase portraits showing flipping of symmetry during grand minima,
with trajectories projected onto the three-dimensional space spanned by Ed, Eq and
〈|u|2〉. (a) For the PDEs, with the parameters used in Figures 6.11 and 6.12, show-
ing cyclic behaviour, modulation and occasional flipping from the dipole to the
quadrupole subspace. (b) A similar plot for the sixth-order ODE model. Here the
basic cycle is filtered out, so modulation and flipping are more clearly shown (from
Knobloch et al., 1998).
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without great changes in amplitude, and only modest variations in the mean square
velocity perturbation 〈|u|2〉; by contrast, in Type 2 there are amplitude changes with-
out great changes in parity, and correspondingly significant variations in 〈|u|2〉 (To-
bias, 1997b; Knobloch et al., 1998). This distinction is best clarified by considering
low-order models.

6.5.2. LOW-ORDER MODELS

The bifurcation structures underlying Type 1 and Type 2 modulation can be es-
tablished by constructing appropriate low-order systems of nonlinear ordinary dif-
ferential equations, whose properties can then be explored in detail. In Cartesian
geometry this is easily done by expressing solutions as truncated Fourier series.
Thus Schmalz & Stix (1991) studied a simple one-dimensional model with dynamic
α–quenching, where the lowest-order truncation yielded the familiar Lorenz sys-
tem (see also Zeldovich et al., 1983) while higher truncations introduced oscil-
latory, quasiperiodic and chaotic behaviour. The nonlinear development of one-
dimensional dynamo waves, limited by the macrodynamic Malkus–Proctor effect,
can be described by a complex generalisation of the Lorenz equations (Weiss et al.,
1984; Jones, Weiss & Cattaneo 1985; Feudel et al., 1993). Solutions of this trun-
cated model exhibit Type 2 modulation; moreover the same sequence of transitions,
to periodic, quasiperiodic and chaotic modulation, also appears for solutions of the
partial differential equations (PDEs) governing the corresponding two-dimensional
problem (Tobias, 1997a). Nevertheless, these severely truncated models share a fun-
damental weakness, for the qualitative results are sensitive to the level of truncation
(Covas et al., 1997).

A more satisfactory alternative is to devise systems whose behaviour is generic and
robust. Thus Type 2 modulation is demonstrated by a third-order model governed by
the normal form equations for a saddle-node/Hopf bifurcation (Tobias et al., 1995).
Here all the hydrodynamics (convection and rotation) is collapsed onto the z–axis
of cylindrical polar co-ordinates (s, φ, z), while the poloidal and toroidal magnetic
fields are represented by x, y, where s2 = x2 + y2. Two fixed points (one stable and
the other unstable) appear on the invariant z–axis in a saddle-node bifurcation. The
hydrodynamically stable fixed point undergoes a Hopf bifurcation, shedding a limit
cycle corresponding to periodic magnetic activity, while the other fixed point re-
mains magnetically stable. After removing a degeneracy (Guckenheimer & Holmes,
1986; Kirk, 1991, 1993), the normal form equations are

ṡ = λ s + a z s , φ̇ = ω , (6.8a,b)

and ż = μ − z2 − s2 + b z3 , (6.8c)
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where λ, μ are control parameters and ω, a, b are real constants (a > 0). Since this
system is still axisymmetric it cannot exhibit chaotic behaviour. To break the axial
symmetry, Tobias et al. (1995) replaced (6.8a,b) by

ṡ = λ s + a z s + c s2 z cos φ , and φ̇ = ω − c s z sin φ . (6.9a,b)

As pointed out by Ashwin, Rucklidge & Sturman (2004), equations (6.9a,b) do not
respect the symmetry (x, y) → (−x,−y) and it would be preferable to choose cubic
terms that do; this omission does not, however, have any qualitative effect on the
results (Wilmot-Smith et al., 2005). Increasing the dynamo number corresponds to
following an appropriate path in the (λ, μ)–plane. If c = 0 the primary Hopf bi-
furcation is followed by a secondary Hopf bifurcation leading to periodically mod-
ulated cycles, with quasiperiodic trajectories lying on a two-torus that encloses the
unstable limit cycle. The torus swells until it is destroyed in a heteroclinic bifur-
cation, with an orbit linking the two fixed points. Setting c �= 0 destroys the axial
symmetry and allows chaotic modulation, associated with resonant tongues, horse-
shoes and a heteroclinic tangle. Figure 6.14 shows examples of trajectories in the
quasiperiodic and chaotic regimes. Because these are normal form equations, we
can expect such behaviour to be robust.

Knobloch & Landsberg (1996) adopted a similar approach for Type 1 modulation.
Since the dipole and quadrupole fields appear in rapid succession and with similar
frequencies, their interaction can be described by a normal form for the Hopf bifur-
cation with 1:1 resonance. If z1, z2 are the complex amplitudes of the two fields the
relevant equations are

ż1 = (μ + σ + i ω1) z1 + a |z1|2 z1 + b |z2|2 z1 + c z2
2 z1 , (6.10a)

ż2 = (μ + i ω2)z2 + a′ |z2|2 z2 + b′ |z1|2 z2 + c′ z2
1 z2 , (6.10b)

where the parameters μ, σ represent the dynamo number and the splitting, respec-
tively, and ω1,2, a, b, c etc. are real constants. This system possesses solutions
corresponding to pure dipole and quadrupole osillations, as well as periodic and
quasiperiodic mixed-mode solutions. Knobloch et al. (1998) [see also Ashwin et
al.(2004)] combined these equations with a reduced form of the saddle-node/Hopf
equations, to obtain a sixth-order system that reproduces the key features of the
PDEs, including both Type 1 and Type 2 modulation and also the interaction be-
tween the two, as well as flipping from dipole to quadrupole symmetry and vice
versa. Figure 6.13b shows a phase portrait for this system that corresponds to that
for the PDEs in Figure 6.13a. Since these forms of modulation appear in normal
form equations we should expect to find them not only in PDEs but in real stars as
well.
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Figure 6.14 - Phase portraits for the third-order system (6.8c), (6.9a,b), which is the
normal form for a saddle-node/Hopf bifurcation. (a) Quasiperiodic motion on a two-
torus, corresponding to periodic modulation of cyclic behaviour: trajectories spiral
out from the upper fixed point on the z–axis and move downwards till they converge
towards the lower fixed point, before spiralling upwards around the invariant z–axis.
(b) Chaotic modulation after the torus has been destroyed (from Weiss & Tobias,
2000).
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6.5.3. ON–OFF AND IN–OUT INTERMITTENCY

From a more mathematical viewpoint, these different types of modulation could
be regarded as examples of intermittency associated with the existence of invariant
subspaces in the phase space of the system. If we restrict attention to idealised large-
scale dynamo action (Tobias et al., 1995) governed by nonlinear axisymmetric mean
field dynamo equations, then the system possesses three invariant subspaces. These
are the purely hydrodynamic subspace Mh, the MHD dipole subspace Md and the
MHD quadrupole subspace Mq.

For modulation of type 2 (as observed in the Sun) it suffices to restrict attention to
orbits that are confined to Mh ∪ Md. One might for simplicity postulate that the
dynamics in Mh is independent of the control parameters (such as the dynamo num-
ber) that determine behaviour in Md; in the simplest case dynamics in Mh is also
unaffected by the magnetic field and we then say that the system has normal parame-
ters and skew product structure. Suppose that behaviour in Mh is chaotic and that a
trajectory within this subspace may sometimes be transversely stable and sometimes
be transversely unstable. This gives rise to on–off intermittency deterministic rather
than stochastic switching. Platt et al. (1993a,b) considered a simple example where
dynamics in Mh was governed by the Lorenz equations in a chaotic regime, while
dynamics in Md was described by the normal form equation for a supercritical Hopf
bifurcation with a control parameter that depended on the chaotic output from the
Lorenz system. The resulting blowout bifurcations (Ott & Sommerer, 1994) led to
bursts of cyclic activity in Md, interspersed with quiescent episodes as the trajectory
approached closer to Mh.

More generally, we should expect hydrodynamic behaviour to be influenced by the
magnetic field and ω (and hence D) so that the system no longer has normal parame-
ters or skew product structure. If there are two invariant sets in Mh, one transversely
stable but non-attracting in Mh and the other transversely unstable but attracting in
Mh, we speak of in–out intermittency (Ashwin, Covas & Tavakol, 1999; Covas et
al., 2001a). The normal form equations (6.10a,b) provide a simple example. Note,
however, that the interesting dynamics of the modulated cycles discussed in the pre-
ceding subsections is determined by behaviour in Md; for suitably chosen parameter
values, this can of course lead to intermittent bursts of activity.

Type 1 modulation corresponds to interactions between Md and Mq only. The
system then has non-normal parameters and non-skew symmetric structure, and be-
haviour in either subspace can be chaotic. In–out intermittency manifests itself as
chaotic changes in parity as trajectories move towards and away from one or other
subspace. With suitably chosen parameters, behaviour can become strikingly inter-
mittent (Brooke et al., 1998; Covas & Tavakol, 1999; Covas et al., 2001a). However,
the situation illustrated in Figure 6.13, where solutions flip from the neighbourhood
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of Md to that of Mq as the trajectory approaches Mh, clearly involves all three
invariant subspaces.

6.6. RAPIDLY ROTATING STARS

Of around 100 nearby late-type stars whose Ca+ H and K emission has been moni-
tored for over 30 years (Baliunas et al., 1995) there are about a dozen slow rotators
that exhibit cycles similar to those observed in the Sun. The measured cycle fre-
quency ωcyc increases with increasing rotation rate in a manner consistent with a
power law of the form ωcyc ∝ ωb for a star of given structure, where 1 < b ≤ 2
(Ossendrijver, 1997; Saar & Brandenburg, 1999). This is consistent with a variety
of nonlinear dynamo models but unfortunately the observations cannot be used to
discriminate between different quenching mechanisms (Tobias, 1998).

When a measure of chromospheric Ca+ emission is plotted as a function of spec-
tral type there appears to be a gap separating old, inactive stars from stars that are
younger, rapidly rotating and more active (Vaughan & Preston, 1980; Henry et al.,
1996). Those stars above this Vaughan-Preston gap whose cycle periods can be
measured again show a power law relationship, with a similar exponent but with
ωcyc about ten times lower at a given rotation rate than it would be for less active
stars below the gap (Saar & Brandenburg, 1999). This indicates that there is a fun-
damental difference between the dynamo processes in rapidly rotating stars and in
the Sun. It is therefore dangerous to extrapolate to other stars from models that have
been tuned to match solar observations.

Such a difference is indeed to be expected (Knobloch et al., 1981). We know that
in the solar convection zone the angular velocity ω varies with latitude rather than
with radius but in a sufficiently rapid rotator Coriolis forces must predominate and
the Proudman–Taylor theorem will lead to elongated convection cells and an angu-
lar velocity that tends to be constant on cylindrical surfaces (see Chapter 3). This
change in the convection pattern has been demonstrated experimentally for elec-
trostatically driven convection in a zero-gravity environment in space (Hart et al.,
1986) and the altered rotation pattern is a regular feature in numerical experiments
(e.g. Rüdiger et al., 1998; Brun & Toomre, 2002; Thompson et al., 2003).

The most rapid rotators, with periods of a few days or less, have strong fields over a
large fraction of their surfaces, produce vigorous X–ray emission from their coronae
and exhibit photometric variability, associated with starspots, as they rotate. Over
a longer interval they show aperiodic variability with characteristic timescales of
several years. By means of Doppler imaging (Rice, 2002; Strassmeier, 2002) it is
possible to determine the positions of starspots and to measure magnetic fields on
these stars. Figure 6.15 shows the brightness distribution on the surface of one of the
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Figure 6.15 - Doppler imaging of the rapidly rotating star AB Doradus: the shading
denotes the fractional spot occupancy at different positions on the stellar surface
and shows a dark polar spot as well as non-axisymmetric patterns at lower latitudes
(from Donati et al., 1999).

best observed examples, AB Doradus, whose rotation period is only 0.5 days (Donati
et al., 1999). Like many similar stars it has a prominent polar spot. (The other pole
is not visible but is expected also to be spotted.) There are also non-axisymmetric
magnetic features at low latitudes. Differential rotation can be measured too: the
absolute range of variation in ω is similar to that in the Sun but proportionately
much less (so that Δω/ω is a decreasing function of ω).

This magnetic pattern is quite different from solar activity and several explanations
have been proposed. Schüssler et al. (1996) considered the effect of a strong Cori-
olis force on the non-axisymmetric instability of an isolated flux tube in the deep
convection zone, and argued that it would be deflected towards the poles. Schrijver
& Title (2001) drew an analogy with the surface flux-transport model of the solar
dynamo and suggested that in a much more active star magnetic flux would still
be swept towards the poles, where it could accumulate to form polar spots. Bushby
(2003b), on the other hand, focused on the stellar interior and on the changed pattern
of differential rotation. He proposed the rotation profile illustrated in Figure 6.16a.
Outside the tangent cylinder that encloses the radiative zone ω is constant on cylin-
drical surfaces, while the tachocline survives within the tangent cylinder and towards
the poles. (This is reminiscent of rotation in the Earth’s core.) With this profile fields
can be generated by a distributed α–effect at low latitudes, while a vigorous interface
dynamo operates at high latitudes, producing dynamo waves that propagate towards
the poles, as illustrated in Figure 6.16b.

Models of lower main-sequence stars show that as the stellar mass decreases the ra-
diative core shrinks until stars eventually become fully convective. Although there
is no scope for an interface dynamo in these low-mass M stars, they still remain
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Figure 6.16 - (a) Conjectured variation of angular velocity in the convection zone of
a rapidly rotating star, with behaviour dominated by the Proudman–Taylor theorem.
Outside the tangent cylinder ω is constant on cylindrical surfaces but there is still a
tachocline near the poles. (b) Corresponding butterfly diagram, with strong cyclic
activity at high latitudes that could give rise to polar spots (courtesy of P.J. Bushby).

extremely active. Doppler imaging of rapidly rotating M dwarfs reveals dark pat-
terns at low and moderate latitudes but no polar spots (Barnes et al., 2001). The
corresponding magnetic field is apparently generated by a vigorous α2ω–dynamo
operating within the convection zone. The dynamo process in these stars is clearly
quite different from that which leads to cyclic activity on the Sun.

Starspots have also been observed on T Tauri stars, which are fully convective but
have not yet evolved onto the main sequence. These stars may be surrounded by
Keplerian accretion discs, within which planets can be formed. A field-free disc is
dynamically stable and incapable of acting as a kinematic dynamo. However, a fi-
nite initial field (whether axial or azimuthal) leads to the development of a magneto–
rotational instability (Balbus & Hawley, 1998). This allows a novel type of boot-
strapping dynamo, for the nonlinear development of the magneto–rotational instabil-
ity can act as a turbulent dynamo to maintain the field that facilitates the instability
(Brandenburg et al., 1995; Hawley, Gammie & Balbus, 1996). Since this process
requires the presence of an initial field its bifurcation structure may resemble that
for Poiseuille flow in a pipe, perhaps with a subcritical bifurcation at infinity.
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6.7. THE FUTURE

We have perforce had to concentrate our discussion on mean field dynamo models.
Although their limitations are extremely obvious, they do seem able to explain the
broad features of magnetic activity in stars like the Sun. Two different approaches
can be distinguished. The first, which we have emphasised here, aims to construct
illustrative models, designed to probe particular aspects of the overall problem and
to demonstrate specific types of qualitative behaviour. The Cartesian and spherical
models described in Sections 6.4 and 6.5, as well as the low-order systems of Sec-
tion 6.5.2, all belong to this category. It is also possible to produce imitative models,
where the free parameters are tuned so as to reproduce the observed behaviour of the
solar cycle (as currently perceived). Such models inevitably require frequent revi-
sion. There is no clear procedure for calculating the free input parameters and their
values will not be constrained until MHD turbulence is properly understood. Unless
these parameters are predetermined it will always be possible to produce models that
imitate the solar cycle – although it is by no means clear that such an enterprise can
provide a deeper understanding of the underlying physics. It must also be stressed
that none of these models, whether illustrative or imitative, have any long-term pre-
dictive power, for they are all too primitive – and, moreover, the solar cycle appears
to be chaotic.

The time has now come for mean field dynamos to be superseded by properly self-
consistent nonlinear computations. Looking ahead, the first need is to isolate the
key problems that need to be tackled before embarking on a full calculation. So far
as the Sun is concerned, there are three issues to be settled. First of all, what is the
origin of the tachocline and how is it maintained? Are magnetic fields inextrica-
bly bound up with the tachocline’s internal circulation, as suggested by Gough &
McIntyre (1998)? Next, what is the structure of convection below the visible sur-
face and deep down in the convection zone? And, finally, how does this convection
drive the pattern of differential rotation that helioseismology has revealed? Once
these questions have been satisfactorily answered, we shall be ready to tackle the
magnetohydrodynamic dynamo itself.
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CHAPTER 7

GALACTIC DYNAMOS

Anvar Shukurov

7.1. INTRODUCTION

Galaxies are attractive objects to study. The magnetism of their natural beauty adds
to the fascinating diversity of physical processes that occur over an enormous range
of scales from the global dimension of order 10 kpc12 down to the viscous turbulent
scales of 1000 km and less. The visual image of a galaxy (see Figure 7.1) is domi-
nated by the optical light mostly produced by stars that contribute most of the visible
galactic mass (2× 1011M� for the Milky Way, where M� = 2× 1030 kg is the mass
of the Sun). A few percent of the galactic mass is due to the interstellar gas that
resides in the gravitational field produced by stars and dark matter. Spiral galaxies
are flat (Figure 7.1) because the stars and gas rapidly rotate. The gas is ionised by
the UV and X-ray radiation and by cosmic rays; the degree of ionization of diffuse
gas ranges from 30% to 100% in various phases – see Section 7.2.1. Interstellar gas
is involved in turbulent motions that can be detected because the associated Doppler
shifts broaden spectral lines emitted by the gas beyond their width expected from
thermal motions alone. The effective mean free path of interstellar gas particles is
small enough to justify a fluid description under a broad range of conditions. Al-
together, interstellar gas can be reasonably described as an electrically conducting,
rotating, stratified turbulent fluid – and thus a site of MHD processes discussed else-
where in this volume, including various types of dynamo action.

12 A length unit appropriate to galaxies is 1 kpc ≈ 3.1 × 1019 m ≈ 3262 light years. The distance
of the Sun from the centre of the Milky Way is s� ≈ 8.5 kpc.
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(a) (b)

Figure 7.1 - Optical images of two nearby spiral galaxies. (a) M51, the Whirlpool
galaxy (with a satellite galaxy at the top). (b) NGC 891 (Both courtesy of the
Canada–France–Hawaii Telescope/J.-C. Cuillandre/Coelum). M51 is one of nearby
galaxies (distance 9.6 Mpc) notable for its prominent spiral pattern. M51 is the
first external galaxy where a well ordered, large-scale magnetic field was detected
(Segalovitz et al., 1976) and studied in fine detail. NGC 891 is at about the same
distance as M51, but seen nearly edge-on, so the thinness of the galactic disc is ev-
ident. The dark strip along the galactic disc and filaments extended away from the
galactic plane are due to obscuration by interstellar dust. The filaments trace gas

The energy density of interstellar magnetic fields is observed to be comparable to
the kinetic energy density of interstellar turbulence and cosmic ray energy density,
and apparently exceeds the thermal energy density of interstellar gas (Cox, 1990).
Therefore, interstellar gas, magnetic field and cosmic rays form a complex, non-
linear physical systems whose behaviour is equally affected by each of the three
components. The system is so complex that magnetic fields and cosmic rays – the
components that are more difficult to observe and model – are often neglected. Such
a simplification is perhaps justifiable at very large scales of order 10 kpc, where the
motions of interstellar gas (mainly the overall rotation) are governed by gravity: sys-
tematic motions at a speed in excess of 10–30 km s−1 are too strong to be affected
by interstellar magnetic fields. However, motions at smaller scales (comparable to
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and less than the turbulent scale, � ≈ 0.1 kpc) are strongly influenced by magnetic
fields. In particular, interstellar turbulence is in fact an MHD turbulence. In this
respect, the interstellar environment does not differ much from stellar and planetary
interiors.

Until recently, interstellar magnetic fields had been a rather isolated area of galactic
astrophysics. The reason for that was twofold. Firstly, magnetic fields are difficult
to observe and model. Secondly, they were understood too poorly to provide useful
insight into the physics of interstellar gas and galaxies in general. The widespread
attitude of galactic astrophysicists to interstellar magnetic fields was succinctly de-
scribed by Woltjer (1967):

The argument in the past has frequently been a process of elimination:
one observed certain phenomena, and one investigated what part of the
phenomena could be explained; then the unexplained part was taken to
show the effects of the magnetic field. It is clear in this case that, the
larger one’s ignorance, the stronger the magnetic field.

The attitude hardly changed in 20 subsequent years, when Cox (1990) observed that

As usual in astrophysics, the way out of a difficulty is to invoke the
poorly understood magnetic field. . . . One tends to ignore the field so
long as one can get away with it.

The situation has changed dramatically over the last 10–15 years. Theory and ob-
servations of galactic magnetic fields are now advanced enough to provide useful
constraints on the kinematics and dynamics of interstellar gas, and the importance
and role of galactic magnetic fields are better appreciated.

In this chapter, we review in Section 7.2 those aspects of galactic astrophysics that
are relevant to magnetic fields, and briefly summarise in Section 7.3 our observa-
tional knowledge of magnetic fields in spiral galaxies. Section 7.4 is an exposition
of the current ideas on the origin of galactic magnetic fields, including the dynamo
theory. The confrontation of theory with observations is the subject of Section 7.5
where we summarise the advantages and difficulties of various theories and argue
that the mean-field dynamo theory remains the best contender. Magnetic fields in
elliptical galaxies are briefly discussed in Section 7.6.
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7.2. INTERSTELLAR MEDIUM IN SPIRAL GALAXIES

7.2.1. TURBULENCE AND MULTI-PHASE STRUCTURE

The interstellar medium (ISM) is much more inhomogeneous and active than stellar
and planetary interiors. The reason for that is ongoing star formation where massive
young stars evolve rapidly (in about 106 yr) and then explode as supernova stars
(SN) releasing large amounts of energy (ESN ≈ 1051 erg ≈ 1044 J per event). These
explosions control the structure of the ISM.

SN remnants are filled with hot, overpressured gas and first expand supersonically;
at this stage the gas surrounding the blast wave is not perturbed. However, a pres-
sure disturbance starts propagating faster than the SN shell as soon as the expansion
velocity becomes comparable to or lower than the speed of sound in the surrounding
gas – at this stage the expanding SN remnant drives motions in the surrounding gas,
and its energy is partially converted into the kinetic energy of the ISM. When pres-
sure inside an SN remnant reduces to values comparable to that in the surrounding
gas, the remnant disintegrates and merges with the ISM. Since SN occur at (almost)
random times and positions, the result is a random force that drives random motions
in the ISM that eventually become turbulent. The size of an SN remnant when it has
reached pressure balance determines the energy-range turbulent scale,

� ≈ 0.05–0.1 kpc .

A useful review of supernova dynamics can be found, e.g. in Lozinskaya (1992),
and the spectral properties of interstellar turbulence are discussed by Armstrong et
al. (1995). Among numerous reviews of the multi-phase ISM we mention that of
Cox (1990) and a recent text of Dopita & Sutherland (2003).

About f = 0.07 of the SN energy is converted into the ISM’s kinetic energy.
With the SN frequency of νSN ≈ (30 yr)−1 in the Milky Way (i.e. one SN per
30 yr), the kinetic energy supply rate per unit mass is ėSN = fνSMESNM−1

gas ≈
10−2 erg g−1 s−1 ≈ 10−6 J kg−1 s−1, where Mgas ≈ 4× 109 M� ≈ 8× 1039 kg is the
total mass of gas in the galaxy. This energy supply can drive turbulent motions at a
speed u0 such that 2u3

0/� = ėSN (where the factor 2 allows for equal contributions
of kinetic and magnetic turbulent energies), which yields

u0 ≈ 10–30 km s−1 ,

a value similar to the speed of sound at a temperature T = 104 K or higher. The
corresponding turbulent diffusivity follows as

ηT ≈ 1
3
�u0 ≈ (0.5–3) × 1022 m2 s−1 . (7.1)
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Table V - The multi-phase ISM. The origin and parameters of the most important
phases of interstellar gas: n, the mid-plane number density in hydrogen atoms per
cm3; T , the temperature in K; cs, the speed of sound in km s−1; h, the scale height
in kpc; and fV , the volume filling factor in the disc of the Milky Way, in per cent.

Phase Origin n T cs h fV

Warm 0.1 104 10 0.5 60 – 80
Hot Supernovae 10−3 106 100 3 20 – 40
Hydrogen clouds Compression 20 102 1 0.1 2
Molecular clouds Self-gravity, 103 10 0.3 0.075 0.1

thermal instability

Supernovae are the main source of turbulence in the ISM. Stellar winds is another
significant source, contributing about 25% of the total energy supply (e.g. Sec-
tion VI.3 in Ruzmaikin et al., 1988).

The time interval between supernova shocks passing through a given point is about
(McKee & Ostriker, 1977; Cox, 1990)

τ = (0.5–5) × 106 yr .

After this period of time, the velocity field at a given position completely renovates
to become independent of its previous form. Therefore, this time can be identified
with the correlation time of interstellar turbulence. The renovation time is 2–20
times shorter than the “eddy turnover” time �/u0 ≈ 107 yr. This means that the
short-correlated (or δ–correlated) approximation, so important in turbulence and
dynamo theory (e.g. Zeldovich et al., 1990; Brandenburg & Subramanian, 2005),
can be quite accurate in application to the ISM – this is a unique feature of in-
terstellar turbulence. Note that the standard estimate (7.1) is valid if the corre-
lation time is �/u0. If the renovation time was used instead, the result would be
ηT ≈ �2/τ ≈ 1023 m2 s−1, a value an order of magnitude larger than the standard
estimate.

Another important result of supernova activity is a large amount of gas heated to
T = 106 K (Figure 7.2). The gas is so tenuous that the collision rate of the gas
particles is low, and so its radiative cooling time is very long and exceeds τ : the hot
bubbles produced by supernovae can merge before they cool (Figure 7.2). A result
is a network of hot tunnels that form the hot component of the ISM. Altogether, the
interstellar gas is found in several distinct states, known as “phases” (this usage may
be misleading as most of them are not proper thermodynamic phases) whose param-
eters are presented in Table V. Some of the parameters (especially the volume filling
factors) are not known confidently, so estimates of Table V should be approached
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Figure 7.2 - SN remnants are expanding bubbles of hot gas that emits thermal
X-rays. (a) This is illustrated by the X-ray image of Tycho’s supernova remnant
(courtesy of the ROSAT Mission and the Max-Planck-Institut für extraterrestrische
Physik) whose parent star’s explosion in 1572 was recorded by the famous Danish
astronomer Tycho Brahe. The hot gas cools only slowly, and SN remnants often
merge. (b) False-colour optical (Hα) image of two SN remnants DEM L316 in the
Large Magellanic Cloud which appear to be colliding (Williams et al., 1997; image
produced by the Magellanic Cloud Emission-Line Survey, reprinted with permis-

with healthy skepticism. The warm diffuse gas can be considered as a background
against which the ISM dynamics evolves; this is the primary phase that occupies a
connected (percolating) region in the disc, whereas the hot gas may or may not fill
a connected region. The warm gas is ionised by the stellar ultraviolet radiation and
cosmic rays; its degree of ionization is about 30% at the Galactic midplane. The hot
gas is so hot that it is fully ionised by gas particle collisions.

The locations of SN stars are not entirely random: 70% of them cluster in regions
of intense star formation (known as OB associations as they contain large numbers
of young, bright stars of spectral classes O and B) where gas density is larger than
on average in the galaxy. Collective energy input from a few tens (typically, 50)
SN within a region about 0.5–1 kpc in size produces a superbubble that can break
through the galactic disc (Tenorio-Tagle & Bodenheimer, 1988). This removes the
hot gas into the galactic halo and significantly reduces its filling factor in the disc
(from about 70% to 10–20%). This also gives rise to a systematic outflow of the hot
gas to large heights where the gas eventually cools, condenses and returns to the disc
after about 109 yr in the form of cold, dense clouds of neutral hydrogen (Wakker &
van Woerden, 1997). This convection-type flow is known as the galactic fountain

© 2007 by Université Joseph Fourier

sion). (See colour insert.)



7.2 – INTERSTELLAR MEDIUM IN SPIRAL GALAXIES 319

(Shapiro & Field, 1976), and it can plausibly support a mean-field dynamo of its
own (Sokoloff & Shukurov, 1990). Another aspect of its role in galactic dynamos
is discussed in Section 7.4.3. The vertical velocity of the hot gas at the base of the
fountain flow is 100–200 km s−1 (e.g. Kahn & Brett, 1993; Korpi et al., 1999a,b).

7.2.2. GALACTIC ROTATION

Spiral galaxies have conspicuous flat components because they rotate rapidly enough.
The Sun moves in the Milky Way at a velocity of about u� = s�Ω� = 220 km s−1,
to complete one orbit of a radius s� ≈ 8.5 kpc in 2π/Ω� = 2.4× 108 yr. These val-
ues are representative for spiral galaxies in general. The Rossby number is estimated
as

Ro =
u0

�Ω�
≈ 4 .

The vertical distribution of the gas is controlled, to the first approximation, by hy-
drostatic equilibrium in the gravity field produced by stars and dark matter, with
pressure comprising thermal, turbulent, magnetic and cosmic ray components in
roughly equal proportion (e.g. Boulares & Cox, 1990; Fletcher & Shukurov, 2001).
The semi-thickness of the warm gas layer is about h = 0.5 kpc, i.e. the aspect ratio
of the gas disc is

ε =
h

s�
≈ 0.06 . (7.2)

Since the gravity force decreases with radius s together with the stellar mass density,
h grows with s at s >∼ 10 kpc (see Section VI.2 in Ruzmaikin et al., 1988, for a
review).

However, the hot gas has larger speed of sound and turbulent velocity, and its Rossby
number can be as large as 10 given that its turbulent scale is about 0.3 kpc (see Poezd
et al., 1993). Hence, the hot gas fills a quasi-spherical volume, where its pressure
scale height of order 5 kpc is comparable to the disc radius.

Ro = 1 at a scale 0.4 kpc in the warm gas, which is similar to the scale height of
the gas layer. This implies that rotation significantly affects turbulent gas motions,
making them helical on average. A convenient estimate of the associated α–effect
can be obtained from F. Krause’s formula,

α0 ≈
�2Ω

h
≈ 0.5 km s−1 , (7.3)

where Ω is the angular velocity, and the numerical estimate refers to the Solar neigh-
bourhood of the Milky Way. Thus, α0 ≈ 0.05 u0 near the Sun and increases in the
inner Galaxy together with Ω.
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Figure 7.3 - (a) The rotation speed sΩ(s) in the galactic midplane versus galactocen-
tric radius s in the Milky Way (solid) (Clemens, 1985), and the generic Schmidt’s
rotation curve with U0 = 200 km s−1, s0 = 3 kpc and n = 1 (dashed). (b) The
corresponding rotation shear rates (taken with minus sign), −s∂Ω/∂s.

The spatial distribution of galactic rotation is known for thousands galaxies (Sofue
& Rubin, 2001) from systematic Doppler shifts of various spectral lines emitted by
stars and gas. In this respect, galaxies are much better explored than any star or
planet (including the Sun and the Earth) where reliable data on the angular velocity
in the interior are much less detailed and reliable or even unavailable. The radial
profile of the galactic rotational velocity is called the rotation curve. Rotation curves
of most galaxies are flat beyond a certain distance from the axis, so Ω ∝ s−1 is a
good approximation for s >∼5 kpc. The rotation curve of a generic galaxy, known as
the Schmidt rotation curve and shown in Figure 7.3, has the form

sΩ(s) = U0
s

s0

[
1

3
+

2

3

(
s

s0

)n]−3/2n

,

where the parameters vary between various galaxies in the range s0 ≈ 5–20 kpc,
U0 ≈ 200 km s−1 and n ≈ 0.7–1. This rotation curve is not flat at large radii,
but it provides an acceptable approximation at moderate distances from galactic
centre where magnetic field generation is most intense. Some galaxies have more
complicated rotation curves. Notably, the Milky Way and M31 are among them
– see Figures 7.3 and 7.5. The complexity of the rotation curves is explained by a
complicated distribution of the gravitating (stellar and dark) mass in those galaxies.
It is evident from Figure 7.3b that the rotation shear is strong at all radii even for the
Schmidt rotation curve, and so the rotation in the inner part of a spiral galaxy cannot
be approximated by the solid-body law, even if the shape of some rotation curves
tempts to do so.

The vertical variation of the rotation velocity is only poorly known. In a uniform
gravitating disc of infinite radial extent the angular velocity of rotation would be
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constant in z. Then it is natural to expect that Ω should decrease along z at a scale
comparable to the radial scale length of the gravitating mass in the disc, typically
s∗ = 3–5 kpc. Recent observations of gas motions in galactic halos have confirmed
such a decrease (Fraternali et al., 2003). In the absence of detailed models, an
approximation Ω ∝ exp (−z/s∗) seems to be appropriate.

7.3. MAGNETIC FIELDS OBSERVED IN GALAXIES

Estimates of magnetic field strength in the diffuse interstellar medium of the Milky
Way and other galaxies are most efficiently obtained from the intensity and Fara-
day rotation of synchrotron emission. Other methods are only sensitive to relatively
strong magnetic fields that occur in dense clouds (Zeeman splitting) or are difficult to
quantify (optical polarisation of star light by dust grains). The total I and polarised
P synchrotron intensities and the Faraday rotation measure RM are weighted inte-
grals of magnetic field over the path length L from the source to the observer, so they
provide a measure of the average magnetic field in the emitting or magneto–active
volume:

I = K

∫
L

ncrB
2
⊥ ds , P = K

∫
L

ncrB
2

⊥ ds , (7.4a,b)

RM = K1

∫
L

neB‖ ds , (7.4c)

where ncr and ne are the number densities of relativistic and thermal electrons, B
is the total magnetic field comprising a regular B and random b parts, B = B + b
with 〈B〉 = B, 〈b〉 = 0 and 〈B2〉 = B2 + 〈b2〉, angular brackets denote averaging,
subscripts ⊥ and ‖ refer to magnetic field components perpendicular and parallel to
the line of sight, and K and K1 = e3/(2π m2

ec
4) = 0.81 rad m−2 cm3 μG−1 pc−1

are certain dimensional constants (with e amd me the electron charge and mass and
c the speed of light). The power of B⊥ and B⊥ in (7.4a,b) in fact depends on the
energy spectral index −q of cosmic ray electrons, being equal to (q + 1)/2 . With
the observed value q � 3, we have (q + 1)/2 � 2. The degree of polarisation p is
related to the ratio 〈b2〉/B2

:

p ≡ P

I
≈ p0

B
2

⊥
B2

⊥
= p0

B
2

⊥

B
2

⊥ + 2
3
〈b2〉

, (7.5)

where the random field b has been assumed to be isotropic in the last equality, ncr

is assumed to be a constant, and p0 ≈ 0.75 weakly depends on the spectral index of
the emission. This widely used relation is only approximate. In particular, it does
not allow for any anisotropy of the random magnetic field, for the dependence of ncr
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on B, and for depolarisation effects; some generalisations are discussed by Sokoloff
et al. (1998).

The orientation of the apparent large-scale magnetic field in the sky plane is given by
the observed B-vector of the polarised synchrotron emission. Due to Faraday rota-
tion, the true orientation can differ by an angle of RMλ2, which amounts to 10◦–20◦

at a wavelength λ = 6 cm. The special importance of the Faraday rotation measure,
RM, is that this observable is sensitive to the direction of B (the sign of B‖) and this
allows one to determine not only the orientation of B but also its direction. Thus,
analysis of Faraday rotation measures can reveal the three-dimensional structure of
the magnetic vector field (Berkhuijsen et al., 1997; Beck et al., 1996).

Since ncr is difficult to measure, it is often assumed that magnetic field and cosmic
rays are in pressure equilibrium or energy equipartition; this allows to express ncr

in terms of B. The physical basis of this assumption is the fact that cosmic rays
(charged particles of relativistic energies) are confined by magnetic fields. An addi-
tional assumption involved is that the energy density of relativistic electrons respon-
sible for synchrotron emission (energy of several GeV per particle) is one percent of
the proton energy density in the same energy interval, as measured near the Earth.

The cosmic ray number density ncr in the Milky Way can be determined inde-
pendently from γ–ray emission produced when cosmic ray particles interact with
the interstellar gas. Then magnetic field strength can be obtained without assum-
ing equipartition (Strong et al., 2000); the results are generally consistent with the
equipartition values. However, equation (7.5) is not consistent with the equiparti-
tion or pressure balance between cosmic rays and magnetic fields as it assumes that
ncr = const. Therefore, B obtained from (7.5) can be inaccurate (Beck et al., 2003).

The mean thermal electron density ne in the ISM can be obtained from the emission
measure of the interstellar gas, an observable defined as EM =

∫
L

n2
e ds, but this

involves the poorly known filling factor of interstellar clouds. In the Milky Way, the
dispersion measures of pulsars, DM =

∫
L

ne ds provide information about the mean
thermal electron density, but the accuracy is limited by our uncertain knowledge of
distances to pulsars. Estimates of the strength of the regular magnetic field in the
Milky Way are often obtained from the Faraday rotation measures of pulsars simply
as

B‖ =
RM

K1 DM
. (7.6)

This estimate is meaningful if magnetic field and thermal electron density are statis-
tically uncorrelated. If the fluctuations in magnetic field and thermal electron density
are correlated with each other, they will contribute positively to RM and (7.6) will
yield overestimated B‖. In the case of anticorrelated fluctuations, their contribution
is negative and (7.6) is an underestimate. As shown by Beck et al. (2003), physically
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Figure 7.4 - The distributions of the strength of the total magnetic field in a sample
of spiral galaxies obtained from the observed synchrotron intensity I using energy
equipartition between magnetic fields and cosmic rays (p. 109 in Niklas, 1995) under
slightly different assumptions. The estimates of the left-hand panel were derived
from integrating the observed synchrotron intensity in the range corresponding to the
relativistic electron energies from 300 MeV to infinity, and in the right-hand panel
the integration was over a frequency range 10 MHz–10 GHz. Results presented in
the left-hand panel are better justified physically (Section 2.1 in Beck et al., 1996;
Section III.A.1 in Widrow, 2002).

reasonable assumptions about the statistical relation between magnetic field strength
and electron density can lead to (7.6) being in error by a factor of 2–3.

The observable quantities (7.4a–c) have provided extensive data on magnetic field
strengths in both the Milky Way and external galaxies (Ruzmaikin et al.., 1988;
Beck et al., 1996; Beck, 2000, 2001). The average total field strengths in nearby
spiral galaxies obtained from total synchrotron intensity I range from B ≈ 4 μG
in the galaxy M31 to about 15 μG in M51, with the mean for the sample of 74
galaxies of B = 9 μG (Beck, 2000). Figure 7.4 shows the distribution of magnetic
field strength in a sample of spiral galaxies. The typical degree of polarisation of
synchrotron emission from galaxies at short radio wavelengths is p = 10–20%, so
(7.5) gives B/B = 0.4–0.5; these are always lower limits due to the limited reso-
lution of the observations, and B/B = 0.6–0.7 is a more plausible estimate. Most
existing polarisation surveys of synchrotron emission from the Milky Way, having
much better spatial resolution, suffer from Faraday depolarisation effects and miss-
ing large-scale emission and cannot provide reliable values for p. The total equipar-
tition magnetic field in the Solar neighbourhood is estimated as B = 6± 2 μG from
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the synchrotron intensity of the diffuse Galactic radio background (E. M. Berkhui-
jsen, in Beck, 2001). Combined with B/B = 0.65, this yields a strength of the local
regular field of B = 4 ± 1 μG. Hence, the typical strength of the local Galactic
random magnetic fields, b = (B2 − B

2
)1/2 = 5 ± 2 μG, exceeds that of the regular

field by a factor b/B = 1.3 ± 0.6.

Meanwhile, the values of B in the Milky Way obtained from Faraday rotation mea-
sures seem to be systematically lower than the above values (see Beck et al., 2003,
and references therein). RM of pulsars and extragalactic radio sources yield B = 1–
2 μG in the Solar vicinity, a value about twice smaller than that inferred from the
synchrotron intensity and polarisation. There can be several reasons for the dis-
crepancy between the estimates of the regular magnetic field strength from Faraday
rotation and synchrotron intensity. Both methods suffer from systematic errors due
to our uncertain knowledge of thermal and relativistic electron densities, so one can-
not be sure if the difference is significant. Nevertheless, the discrepancy seems to be
worrying enough to consider carefully its possible reasons.

The discrepancy can be explained, at least in part, if the methods described above
sample different volumes. The observation depth of total synchrotron emission,
starlight polarisation and of Faraday rotation measures are all of the order of a few
kpc. Polarised emission, however, may emerge from more nearby regions. However,
a more fundamental reason for the discrepancy can be partial correlation between
fluctuations in magnetic field and electron density. Such a correlation can arise
from statistical pressure balance where regions with larger gas density have weaker
magnetic field, and vice versa. As discussed by Beck et al. (2003), the term 〈b‖ne〉
then differs from zero and contributes to the observed RM leading to underestimated
B. In a similar manner, correlation between B and the cosmic ray number density
biases the estimates of magnetic field from synchrotron intensity and polarisation
(see also Sokoloff et al., 1998). Altogether, B = 4 μG and b = 5 μG seem to be
acceptable estimates of magnetic field strengths near the Sun. The geometry and
three-dimensional structure of the magnetic fields observed in spiral galaxies are
further discussed in Section 7.5.

7.4. THE ORIGIN OF GALACTIC MAGNETIC FIELDS

There are two basic approaches to the origin of global magnetic structures in spiral
galaxies – one of them asserts that the observed structures represent a primordial
magnetic field twisted by differential rotation, and the other that they are due to
ongoing dynamo action within the galaxy. The simplicity of the former theory is ap-
pealing, but it fails to explain the strength, geometry and apparent lifetime of galactic
magnetic fields (Ruzmaikin et al., 1988; Beck et al., 1996; Kulsrud, 1999; Widrow,
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2002; see Section 7.5 below). Furthermore, there are no mechanisms known to pro-
duce cosmological magnetic fields of required strength and scale (Beck et al., 1996),
although Kulsrud et al. (1997) argue that suitable magnetic field can be produced in
protogalaxies. Dynamo models appear to be much better consistent with the obser-
vational and theoretical knowledge of interstellar gas, and all models of magnetic
fields in specific galaxies, known to the author, have been formulated in terms of
dynamo theory. It seems to be very plausible that galactic magnetic fields are gen-
erated by some kind of dynamo action, i.e. that they are produced in situ. The most
promising is the mean-field turbulent dynamo.

7.4.1. MEAN-FIELD MODELS OF THE GALACTIC DYNAMO

As discussed in Section 7.2.2, the discs of spiral galaxies are thin. This provides a
natural small parameter, the disc aspect ratio, equation (7.2). This greatly facilitates
modelling of many global phenomena in galaxies, including large-scale magnetic
fields. Parker (1971) and Vainshtein & Ruzmaikin (1971, 1972) were the first to
suggest mean-field dynamo models for spiral galaxies. These were local models
discussed in Section 7.4.1, where only derivatives across the disc (in z) are retained.
The theory has been extended to two and more dimensions and applied to specific
galaxies (see Ruzmaikin et al., 1988; Beck et al., 1996; Widrow, 2002 and refer-
ences therein). Rigorous asymptotic solutions for the αω–dynamo in a thin disc
were developed by Soward (1978, 1992a,b) and further discussed by Priklonsky et
al. (2000) and Willis et al. (2003). Reviews of these results can be found in Ruz-
maikin et al. (1988), Beck et al. (1996), Kulsrud (1999) and Soward (2003).

In this section we present asymptotic solutions of the mean-field dynamo equations
(1.103) in a thin disc surrounded by vacuum. We first consider axially symmet-
ric solutions of the kinematic problem, and then discuss generalisations to non-
axisymmetric modes and to nonlinear regimes. Cylindrical coordinates (s, φ, z)
with the origin at the galactic centre and the z–axis parallel to the galactic angu-
lar velocity are used throughout this chapter. In this section we use dimensionless
variables, with s and z measured in the units of the characteristic disc radius and
disc half-thickness (e.g. s0 = s� ≈ 8.5 kpc and h0 = 0.5 kpc), respectively. Then
the dimensionless radial and axial distances are both of order unity within the disc
as they are measured in different units in order to make the disc thinness explicit.
The corresponding time unit is the turbulent magnetic diffusion time across the disc,
h2

0/ηT ≈ 7.5 × 108 yr.

It is convenient to introduce a unit rotational shear rate G0:

G = s
∂Ω

∂s
≡ G0g(s, z) , (7.7)
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with g(s, z) its dimensionless value and G0 = −Ω� for a flat rotation curve, Ω ∝ s−1,
and adopt the characteristic magnitude of the α–coefficient near the Sun as given by
equation (7.3).

KINEMATIC, AXIALLY SYMMETRIC SOLUTIONS

The three components of an axially symmetric magnetic field can be expressed in
terms of the azimuthal components of the large-scale magnetic field Bφ and vector
potential Aφ:

B =

(
−∂Aφ

∂z
, Bφ,

1

s

∂

∂s
(sAφ)

)
. (7.8)

The dimensionless governing equations, resulting from (1.103) have the form

∂Bφ

∂t
= −Rωg

∂Aφ

∂z
+

∂2Bφ

∂z2
+ ε2 ∂

∂s

[
1

s

∂

∂s
(sBφ)

]
, (7.9a)

∂Aφ

∂t
= RααBφ +

∂2Aφ

∂z2
+ ε2 ∂

∂s

[
1

s

∂

∂s
(sAφ)

]
, (7.9b)

where Rω =
G0h

2
0

ηT

, Rα =
α0h0

ηT

(7.9c,d)

are the turbulent magnetic Reynolds numbers that characterise the intensity of in-
duction effects due to differential rotation and the mean helicity of turbulence, re-
spectively. We have neglected the vertical shear ∂Ω/∂z which can easily be restored,
and assumed for simplicity that ηT = const. A term containing α has been neglected
in (7.9a) for the sake of simplicity (but can easily be restored), so the equations are
written in the αω–approximation.

The kinematic, axially symmetric asymptotic solution in a thin disc has the form(
Bφ

Aφ

)
= eΓt

[
Q(ε−1/3s)

(
B(z; s)
A(z; s)

)
+ . . .

]
,

where Γ is the growth rate, (B,A) represent the suitably normalised local solution
(obtained for fixed s), and Q is the amplitude of the solution which can be identified
with the field strength at a given radius.

THE LOCAL SOLUTION

The local solution (with s fixed) arises in the lowest order in ε. Its governing equa-
tions, obtained from (7.9a,b) by putting ε = 0, contain only derivatives with respect
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to z, with coefficients depending on s as a parameter (hence, the notation of the
arguments of b and a with semicolon separating z and s):

γ(s)B = −Rω g(s) ∂zA + ∂zzB , (7.10a)
γ(s)A = Rα α(s, z)B + ∂zzA , (7.10b)

were γ(s) is the local growth rate. The boundary conditions often applied at the disc
surface z = ±h(s) correspond to vacuum outside the disc. For axisymmetric fields
and to the lowest order in ε they are (see below)

B = 0 and ∂zA = 0 at z = ±h(s) . (7.11a,b,c)

Since α is an odd function of z, kinematic modes have either even (quadrupole) or
odd (dipole) parity, with the following symmetry conditions at the disc midplane
(see, e.g., Ruzmaikin et al., 1988):

∂zB = 0 and A = 0 at z = 0 (quadrupole) , (7.12a)

or B = 0 and ∂zA = 0 at z = 0 (dipole) . (7.12b)

In order to clarify the nature of the dynamo modes in a thin disc, here we consider
an approximate solution of (7.10a,b) in the form of expansion in free-decay modes
Bn(z) and An(z) obtained for Rα = Rω = 0:

γnBn = ∂zzBn , γnAn = ∂zzAn ,

where γn (< 0) is the decay rate of the nth mode. For the boundary conditions
(7.11a–c) and (7.12a) that select quadrupolar modes, the resulting orthonormal set
of basis functions is given by(

B2n

A2n

)
=

( √
2 cos

[
π(n + 1

2
)z/h

]
0

)
,

(
B2n+1

A2n+1

)
=

(
0√

2 sin
[
π(n + 1

2
)z/h

] )
,

γ2n = γ2n+1 = −π2(n + 1
2
)2 , n = 0, 1, . . . .

The free-decay eigenvalues are all doubly degenerate, and two vector eigenfunc-
tions, one with odd index and the other with even one, correspond to each eigen-
value, one with B2n+1 = 0, and the other with A2n = 0. The eigenfunctions are
normalised to have

∫ h

0
(B2

n + A2
n) dz = 1.

The solution of (7.10a,b) is represented as(
B
A

)
≈ eγt

∞∑
n=0

cn

(
Bn

An

)
,
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where cn are constants. We substitute this series into (7.10a,b), multiply by (Bk, Ak)
and integrate over z from 0 to h to obtain an algebraic system of homogeneous
equations for ck whose solvability condition yields an algebraic equation for γ. For
our current purposes, it is sufficient to retain the smallest possible number of modes,
which results in a system of two equations for c0 and c1 and a quadratic equation for
γ whose positive solution is given by

γ ≈ −1
4
π2 +

√
W01W10 , (7.13a)

where W01 =

∫ h

0

α b0 a1 dz = 1 for α = sin πz/h , (7.13b)

W10 = −D

∫ h

0

b0 a1 dz = −π

4
D , (7.13c)

and D = RαRω is the dynamo number (see Section 1.5.3).

To assess the accuracy of (7.13a), we note that it yields γ = 0 for D = Dcr =
−π3/4 ≈ −8, very close to the accurate value obtained numerically (Ruzmaikin
et al., 1988). This solution indicates that the dominant mode is non-oscillatory
(Im γ = 0); this is confirmed by other analytical and numerical solutions of the
dynamo equations in thin discs.

A similar solution can be obtained for dipolar modes. The free decay modes of
dipolar symmetry have γn = −n2π2, n = 1, 2, . . ., so that the lowest dipolar mode
decays four times faster than the lowest quadrupolar mode. The reason for that is
that the azimuthal field of dipolar parity has zero not only at |z| = h but also at
z = 0 and so a smaller scale than the quadrupolar solution. This immediately im-
plies that quadrupolar modes, with Bφ(z) = Bφ(−z), Bs(z) = Bs(−z), Bz(z) =
−Bz(−z), should be dominant in galactic discs. The dominant symmetry of galac-
tic magnetic fields is thus expected to be different from that in stars and planets,
where dipolar fields are preferred. This prediction is confirmed by observations (see
Section 7.5.2).

THE GLOBAL SOLUTION

The vacuum boundary conditions are often used in analytical and semi-analytical
studies of disc dynamos because of their (relative) simplicity. Most importantly, they
have a local form in the lowest order in ε – see (7.11a–c). However, this advantage
is lost as soon as the next order in ε is considered, which is needed in order to obtain
a governing equation for the field distribution along radius, Q. To this order, non-
local magnetic connection between different radii has to be included, i.e. the fact that
magnetic lines leave the disc at some radius, pass through the surrounding vacuum
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and return to the disc at another radius. In this section we discuss the radial dynamo
equation, and for this purpose we have to consider vacuum boundary conditions to
the first order in ε.

If the disc is surrounded by vacuum, there are no electric currents outside the disc,
i.e. ∇ × B = 0, so that the outer magnetic field is potential, B = −∇Φ (see Sec-
tion 1.1.4). Then axial symmetry implies that the azimuthal field vanishes outside
the disc. Since magnetic field must be continuous on the disc boundary, this yields
the following boundary condition at the disc surface z = ±h(s):

Bφ|z=±h = 0 . (7.14)

The vacuum boundary condition for the poloidal field (determined by Aφ) was de-
rived in local Cartesian coordinates by Soward (1978). Priklonsky et al. (2000)
rederived it in cylindrical geometry in the form

∂Aφ

∂z
− ε

s
L

(
Aφ

)
= 0 at z = ±h(s) , (7.15a)

where the integral operator L(Aφ) is defined as

L
(
Aφ

)
=

∫ ∞

0

W (s, s′)
∂

∂s′

(
1

s′
∂

∂s′
s′Aφ

)
ds′ (7.15b)

with the kernel
W (s, s′) = ss′

∫ ∞

0

J1(ks)J1(ks′) dk , (7.15c)

where J1(x) is the Bessel function. Willis et al. (2003) obtained another, equivalent
form of the integral operator involving Green’s function of the Neumann problem
for the Laplace equation.

The integral part of the boundary condition (7.15a) can be transferred into a non-
local term in the equation for Q which then becomes an integro-differential equation
of the form (Priklonsky et al., 2000)

[Γ − γ(s)] q(s) = εp(s)L{q(s)} , (7.16a)

where

q(s) = Q(s)A(h; s) , p(s) =
A(h, s)A∗(h, s)

〈X|X∗〉
, X =

(
B(z; s)
A(z; s)

)
.

(7.16b,c,d)
Here X is the eigenvector of the lowest-order boundary value problem discussed in
Section 7.4.1, the asterisk denotes the eigenvector of its adjoint problem, and

〈X|X∗〉 =

∫ h

0

X · X∗ dz .
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The solution of (7.16a) subject to the boundary conditions

q(0) = 0 and q → 0 as s → ∞

provides yet another eigenvalue problem, for which the eigenvalue is the global
growth rate Γ and the eigenfunction is q(s) which determines the radial profile of
the global eigenfunction Q. As shown by Willis et al. (2003), the effect of the
integral term in (7.16a) can be described as enhanced radial diffusion.

Equation (7.16a) is complicated enough as to provoke an irresistible desire to sim-
plify it. Such a simplification, employed by Baryshnikova et al. (1987) (see also
Ruzmaikin et al., 1988) consists of neglecting the term containing ε in the bound-
ary condition (7.15a). This makes the boundary condition local and leads to the
following equation for Q(s):

[Γ − γ(s)]Q = ε2 ∂

∂s

(
1

s

∂

∂s
sQ

)
, (7.17)

similar to (7.16a), but with the integral term replaced by the diffusion operator. For-
mally, (7.17) can be obtained from (7.16a) by replacing the integral kernel by the
delta-function, W (s, s′) → δ(s−s′). In other words, this simplification neglects any
nonlocal coupling between different parts of the disc via the halo, but includes the
local diffusive coupling within the disc. We note in this connection that the kernel
W (s, s′) is indeed singular, although the singularity is only logarithmic in reality,
W (s, s′) ∼ ln |s − s′|.
The above simplification greatly facilitates the analysis of the global dynamo solu-
tions and all applications of the thin-disc asymptotics to galaxies and accretion discs
neglect the nonlocal effects. Equation (7.17) can be readily solved using a variety
of analytical and numerical techniques (Ruzmaikin et al., 1988), but some features
of the solution are lost together with nonlocal effects. The most important failure is
that the asymptotic scaling of the solution with ε is affected, with the radial scale
becoming ε−1/2h0 instead of the correct value ε−1/3h0. However, the difference is
hardly significant numerically for the realistic values ε ≈ 10−1–10−2. We note that
the thin-disc asymptotics are reasonably accurate for ε <∼10−1 (Baryshnikova et al.,
1987; Willis et al., 2003).

Another consequence of the nonlocal effects is that solutions of (7.16a) possess
algebraic tails far away from the dynamo active region, q ∼ s−4, whereas solutions
of (7.17) have exponential tails typical of the diffusion equation. This affects the
speed of propagation of magnetic fronts during the kinematic growth of the magnetic
field: with the nonlocal effects, the front propagation is exponentially fast, whereas
the local radial diffusion alone results in a linear propagation.

These topics are discussed in detail by Willis et al. (2003) who compare numer-
ical solutions of (7.16a) and (7.17). Whether or not the nonlocal effects can be
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neglected depends on the goals of the analysis. There are several reasons why this
simplification appears to be justified. The neglect of nonlocal effects does not seem
to affect significantly any observable quantities, whereas the parameters of spiral
galaxies and of their magnetic fields are known with a rather limited accuracy any-
way. Moreover, the halos of spiral galaxies can be described as vacuum only in
a very approximate sense, and the finite conductivity of the halo will weaken the
nonlocal effects.

NON-AXISYMMETRIC, NONLINEAR AND NUMERICAL SOLUTIONS

The above asymptotic theory can readily be extended to non-axisymmetric solutions.
This generalisation is discussed by Krasheninnikova et al. (1989) and Ruzmaikin et
al. (1988). Starchenko & Shukurov (1989) developed WKBJ asymptotic solutions
of the mean-field galactic dynamo equations valid for |D| � 1. A similar asymptotic
regime for one-dimensional dynamo equations (7.10a,b) is discussed in Section 9.IV
of Zeldovich et al. (1983).

Another useful approximate approach, known as the “no–z” approximation, was
suggested by Subramanian & Mestel (1993). In this approximation, derivatives
across the disc in (7.9a,b) or their three-dimensional analogues are replaced by di-
vision by the disc semi-thickness, ∂z → 1/h, and the resulting equations in s and φ
are solved, e.g. by the WKBJ method or numerically. This approach appears to be
rather crude at first sight, but it is quite efficient because the structure of the magnetic
field across a thin disc is rather simple, at least for the lowest mode. A refinement of
the approximation to improve its accuracy is discussed by Phillips (2001). Mestel
and Subramanian (1991) and Subramanian & Mestel (1993) apply these solutions to
study the effects of spiral arms on galactic magnetic fields. This approximation was
also extensively used in numerical simulations of galactic dynamos (Moss 1995; see
Moss et al., 2001 for an example).

Nonlinear asymptotics of (7.10a,b) for |D| � 1 are discussed by Kvasz et al. (1992),
where it is supposed that the nonlinearity affects significantly magnetic field distri-
bution across the disc, and to the lowest approximation the steady state of the dy-
namo is established locally. This, however, may not be the case. The radial coupling
is significant already at the kinematic stage where it results in the establishment of
a global eigenfunction as described by (7.16a) or (7.17). Nonlinear effects are more
likely to affect the global eigenfunction, and so have to affect the radial equation.
Poezd et al. (1993) have derived a nonlinear version of (7.17) assuming the standard
form of α–quenching with the α–coefficient modified by magnetic field as

α̃ =
α

1 + B
2
/B2

0

, (7.18)
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where B0 is a suitably chosen saturation level most often identified with a state
where magnetic and turbulent kinetic energy densities are of the same order of mag-
nitude (see discussions in Sections 2.7.2 and 6.3). As a result, the magnetic field
can grow when B � B0, but then the growth slows down as the quenched dynamo
number obtained with α̃ approaches its critical value Dcr, and the field growth satu-
rates at B ≈ B0. In terms of the thin-disc asymptotic model, this implies that γ(s)
in (7.16a) and (7.17) ought to be replaced by γ(s)(1−Q2/B2

0), so that the nonlinear
version of (7.17) with the nonlinearity (7.18) has been derived in the form

∂Q

∂t
= γ(s)

(
1 − Q2

B2
0

)
Q + ε2 ∂

∂s

[
1

s

∂

∂s
sQ(s)

]
, (7.19)

provided the local solution has been normalised in such a way that Q is a field
strength averaged across the disc at a given radius. The derivation of this equa-
tion by averaging the governing equations across the disc can be found in Poezd et
al. (1993). This equation and its nonaxisymmetric version have been extensively
applied to galactic dynamos (see Beck et al., 1996, and references therein).

The detailed physical mechanism of the saturation of the dynamo action is still
unclear. Cattaneo et al. (1996) suggest that the saturation is associated with the
suppression of the Lagrangian chaos of the gas flow by the magnetic field. This
mechanism, attractive in the context of convective systems (where the flow becomes
random due to intrinsic reasons, e.g. instabilities), can hardly be effective in galax-
ies where the flow is random because of the randomness of its driving force (the
supernova explosions).

Most numerical solutions of galactic dynamo equations that extend beyond the thin-
disc approximation rely on the “embedded disc” approach (Stepinski & Levy, 1988;
Elstner et al., 1990). Instead of using complicated boundary conditions at the
disc surface, this approach considers a disc embedded into a halo whose size is
large enough as to make unimportant boundary conditions posed at the remote halo
boundary. Since turbulent magnetic diffusivity in galactic halos is larger than in
the disc (Sokoloff & Shukurov, 1990; Poezd et al., 1993), meaningful embedded
disc models are compatible with thin-disc asymptotic solutions obtained with vac-
uum boundary conditions and confirm the asymptotic results. The embedded disc
approach was also used to study dynamo-active galactic halos (Brandenburg et al.,
1992, 1993, 1995; Elstner et al., 1995). Further extensions of disc dynamo models
include the effects of magnetic buoyancy (Moss et al., 1999), accretion flows (Moss
et al., 2000) and external magnetic fields (Moss & Shukurov, 2001, 2004).

An implication of the nonlinear model for the thin-disc dynamo is that the local solu-
tion is unaffected by nonlinear effects whose main role is to modify the radial field
structure. An important consequence of this is that it can be reasonably expected
that the pitch angle of magnetic lines, pB = arctan Bs/Bφ, is weakly affected by
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nonlinear effects, and so represents an important feature of the solution that can be
directly compared with observations (Baryshnikova et al., 1987). This expectation
seems to be confirmed by observations (Section 7.5.1). Nevertheless, the modifica-
tion of the magnetic pitch angle by nonlinear effects has never been studied in detail,
which seems to be a regrettable omission.

DYNAMO CONTROL PARAMETERS IN SPIRAL GALAXIES

A remarkable feature of spiral galaxies is that they are (almost) transparent to elec-
tromagnetic waves over a broad range of frequencies, so the kinematics of the ISM
is rather well understood, and therefore most parameters essential for dynamo action
are well restricted by observations. This leaves less room for doubt and less freedom
for speculation than in the case of other natural dynamos. Another advantage is that
observations of polarised radio emission at a linear resolution of 1–3 kpc (typical of
the modern observation of nearby galaxies) reveal exactly that field which is mod-
elled by the mean-field dynamo theory (given volume and ensemble averages are
identical).

The mean-field dynamo is controlled by two dimensionless parameters quantifying
the differential rotation and the so-called α–effect, as defined in (7.9c,d). Using (7.1)
and (7.3) and assuming a flat rotation curve, Ω = U0/s, we obtain the following
estimates for the solar vicinity of the Milky Way:

Rω ≈ −3
U0

u0

h2
0

�s
≈ −20 , Rα ≈ 3

U0

u0

�

s
≈ 1 , (7.20a,b)

where U0 = s0Ω0 is the typical rotational velocity. Since |Rω| � Rα, differential
rotation dominates in the production of the azimuthal magnetic field (i.e. the αω–
dynamo approximation is well applicable), and the dynamo action is essentially
controlled by a single parameter, the dynamo number

D = RαRω ≈ 10
h2

0

u2
0

sΩ
∂Ω

∂s
≈ −10

(
U0h0

u0s

)2

≈ −20 , (7.21)

where the numerical estimate refers to the Solar vicinity. Thus, |D| does exceed the
critical value for the lowest, non-oscillatory quadrupole dynamo mode, which then
can be expected to dominate in the main parts of spiral galaxies. It is often useful
to consider the local dynamo number D(s), a function of galactocentric radius s,
obtained when the s–dependent, local values of the relevant parameters are used in
equation (7.9c,d) or (7.21) instead of the characteristic ones.

The local regeneration (e-folding) rate of the regular magnetic field γ is related to the
magnetic diffusion time along the smallest dimension of the gas layer and to the dy-
namo number (if |Rω| � Rα). Using the perturbation solution of Section 7.4.1, the
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following expression (written in dimensional form) can be used as a rough estimate:

γ ∼ ηT

h2

(√
|D| −

√
|Dcr|

)
, for |D| >∼Dcr , (7.22)

where Dcr ≈ −8 and numerical factor of order unity has been omitted. This yields
the local e-folding time γ−1 ≈ 5 × 108 yr for the Solar neighbourhood. When the
radial diffusion is included, i.e. equation (7.16a) or (7.17) is solved, the growth rate
decreases, yielding a global e-folding time of Γ−1 ≈ 109 yr near the Sun. Thus, the
large-scale magnetic field near the Sun can be amplified by a factor of about 104 dur-
ing the galactic lifetime, 1010 yr, and the Galactic seed field had to be rather strong,
about 10−10 G. The fluctuation dynamo can produce such a statistical residual mag-
netic field at the scale of the leading eigenfunction either in the young galaxy (Sec-
tion VII.13 in Ruzmaikin et al., 1988; Widrow, 2002) or in the protogalaxy (Kulsrud
et al., 1997).

The above growth rate, estimated for the Solar neighbourhood of the Milky Way,
is often erroneously adopted as a value typical of spiral galaxies in general. It is
then important to note that the regeneration rate is significantly larger in the inner
Galaxy (the local dynamo number rapidly grows as s becomes smaller, D(s) ∝ GΩ
– see Figure 7.3) and in other galaxies. For example, Baryshnikova et al. (1987)
estimate the global growth time of the leading axisymmetric mode in the galaxy
M51 as 5 × 107 yr.

Gaseous discs of spiral galaxies are flared, ie., h ∝ s + const at s >∼10 kpc, whereas
u0 only slightly varies with s. For a flat rotation curve, Ω ∝ s−1, equation (7.21)
then shows that the local dynamo number does not vary much with galactocentric
radius s and remains supercritical, |D(s)| ≥ |Dcr| out to a large radius. It is therefore
not surprising that regular magnetic fields have been detected in all galaxies where
observations have sufficient sensitivity and resolution (Wielebinski & Krause, 1993;
Beck et al., 1996; Beck, 2000, 2001).

A standard estimate of the steady-state strength of magnetic field produced by the
mean-field dynamo follows from the balance of the Lorentz force due to the large-
scale magnetic field and the Coriolis force that causes deviations from mirror sym-
metry (Ruzmaikin et al., 1988; Shukurov, 1998):

B ≈
[
4πρu0Ω�

(∣∣∣∣ D

Dcr

∣∣∣∣ − 1

)]1/2

(7.23)

≈ 2 μG

(∣∣∣∣ D

Dcr

∣∣∣∣ − 1

)1/2 ( n

1 cm−3

)1/2 ( u0

10 km s−1

)1/2

,

where ρ ≈ 1.7 × 10−21 kg m−3 is the density of interstellar gas and n its number
density, n = ρ/mH with mH the proton mass. This estimate yields values that
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are in good agreement with observations, but its applicability perhaps has to be
reconsidered in view of the current controversy about the nonlinear behaviour of
mean-field dynamos (see Section 7.4.3).

It is now clear what information is needed to construct a useful dynamo model for
a specific galaxy: its rotation curve, the scale height of the gas layer, the turbulent
scale and speed, and the gas density. All these parameters are observable, even
though their observational estimates may be incomplete or controversial. One of
successes of the mean-field dynamo theory is its application to spiral galaxies, where
even simplest, quasi-kinematic models presented above are able to reproduce all
salient features of the observed fields, both in terms of generic properties and for
specific galaxies (Ruzmaikin et al., 1988). We discuss this in Section 7.5.

Recent observational progress has allowed to explore the effects of galactic spi-
ral patterns on magnetic fields (Beck, 2000). The corresponding dynamo mod-
els require the knowledge of the arm-interarm contrast in all the relevant variables
(Shukurov & Sokoloff, 1998; Shukurov, 1998; Shukurov et al., 2004).

7.4.2. THE FLUCTUATION DYNAMO
AND SMALL-SCALE MAGNETIC FIELDS

Similarly to mean-field dynamos, the theory of the fluctuation dynamo is well un-
derstood in the kinematic regime, but nonlinear effects remain controversial. In this
section we present results obtained with kinematic models of the fluctuation dynamo
and those derived with simplified nonlinearity. The pioneering kinematic model of
the fluctuation dynamo was developed by Kazantsev (1967), and many more recent
developments are based on it. Detailed reviews of the theory and references can
be found in Section 8.IV of Zeldovich et al. (1983), Chapter 9 of Zeldovich et al.
(1990) and in Brandenburg & Subramanian (2005).

The growth time of the random magnetic field in a random velocity field of a scale
� is as short as the eddy turnover time, �/u0 ≈ 107 yr in the warm phase for
� = 0.1 kpc. The magnetic field produced by the dynamo action is a statistical en-
semble of magnetic flux ropes and ribbons whose length is of the order of the flow
correlation length, � ≈ 0.05–0.1 kpc. Their thickness is of the order of the resistive
scale, � Rm−1/2, in a single-scale velocity field, where Rm is the magnetic Reynolds
number. A phenomenological model of dynamo in Kolmogorov turbulence yields
the rope thickness of � Rm−3/4 (Subramanian, 1998). The dynamo action can occur
provided Rm > Rmcr, where the critical magnetic Reynolds number is estimated
as Rmcr = 30–100 in simplified models of homogeneous, incompressible turbu-
lence. Recent studies have revealed the possibility that small-scale magnetic fields
can have peculiar fine structure because the magnetic dissipation scale in the inter-
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stellar gas is much smaller than that of turbulent motions, i.e. because the magnetic
Prandtl number is much larger than unity (Schekochihin et al., 2002).

Subramanian (1999) suggested that a steady state, reached via the back-action of
the magnetic field on the flow, can be established by the reduction of the effective
magnetic Reynolds number down to the value critical for the dynamo action, an idea
similar to the concept of α–quenching in the mean-field theory. Then the thickness
of the ropes in the steady state can be estimated as � Rm−1/2

cr or � Rm−3/4
cr . Using

a model nonlinearity in the induction equation with incompressible velocity field,
Subramanian (1999) showed that the magnetic field strength within the ropes and
ribbons b0 saturates at the equipartition level with kinetic energy density, b2

0/8π ≈
1
2
ρu2

0. The average magnetic energy density is estimated as b2/8π ≈ 1
2
Rm−1

cr ρu2
0,

implying the volume filling factor of the ropes of order fV ∼ Rm−1
cr ≈ 0.01. In the

case of magnetic sheets, we similarly obtain fV ∼ Rm−1/2
cr ≈ 0.1. Correspondingly,

the mean magnetic energy generated by the small-scale dynamo in the steady state
is about several percent of the turbulent kinetic energy density, in agreement with
numerical simulations.

Shukurov & Berkhuijsen (2003) interpret thin, random filaments of zero polarised
intensity observed in polarisation maps of the Milky Way (known as depolarisation
canals) as a result of Faraday depolarisation in the turbulent interstellar gas. This
interpretation has resulted in a tentative estimate of the Taylor microscale of the
interstellar turbulence

�T = � R̃m
−1/2

≈ 0.6 pc ,

where R̃m is the effective magnetic Reynolds number in the ISM. This yields the
following estimate:

R̃m ≈ 104 .

Of course, this is a very tentative estimate, and further analyses of observations and
theoretical developments will be needed to refine it. The value of R̃m obtained is
significantly larger than Rmcr obtained in idealised models. This might be due to
the transonic nature of interstellar turbulence as the gas compressibility appears to
hinder dynamo action. Kazantsev et al. (1985) have shown that the e-folding time of
magnetic field in the acoustic-wave turbulence (i.e. a compressible flow) is as long
as M̃4�/u0, where M̃ ( >∼1) is the Mach number.

Using parameters typical of the warm phase of the ISM, this theory predicts that the
small-scale dynamo would produce magnetic flux ropes and ribbons of the length (or
the curvature radius) of about � = 50–100 pc and thickness 5–10 pc for R̃m = 102

and 0.5–10 pc for R̃m = 104. The field strength within them, if at equipartition
with the turbulent energy, has to be of order 2–5 μG in the warm phase and per-
haps slightly less in the hot gas. Note that some heuristic models of the small-scale
dynamo admit solutions with magnetic field strength within the ropes being sig-
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nificantly above the equipartition level, e.g. because the field configuration locally
approaches a force-free one, |(∇ × B) × B| � |B|2/�, where � is the field scale
(Belyanin et al., 1993).

The small-scale dynamo is not the only mechanism producing random magnetic
fields (e.g. Section 4.1 in Beck et al., 1996, and references therein). Any mean-field
dynamo action producing magnetic fields at scales exceeding the turbulent scale
also generates small-scale magnetic fields. Similarly to the mean magnetic field,
this component of the turbulent field presumably has a filling factor close to unity
in the warm gas and its strength is expected to be close to equipartition with the
turbulent energy at all scales.

The overall structure of the interstellar turbulent magnetic field in the warm gas
can be envisaged as a quasi-uniform fluctuating background with several percent of
the volume occupied by flux ropes and ribbons of a length 50–100 pc containing a
well-ordered magnetic field. This basic distribution would be further complicated
by compressibility, shock waves, MHD instabilities (such as Parker instability), the
fine structure at subviscous scales, etc.

The site of the mean-field dynamo action is plausibly the warm phase rather than
the other phases of the ISM. The warm gas has a large filling factor (so it can oc-
cupy a percolating global region), it is, on average, in a state of hydrostatic equilib-
rium, so it is an ideal site for both the small-scale and mean-field dynamo action.
Molecular clouds and dense H I clouds have too small a filling factor to be of global
importance. Fletcher & Shukurov (2001) argue that, globally, molecular clouds can
be only weakly coupled to the magnetic field in the diffuse gas, but Beck (1991)
suggests that a significant part of the large-scale magnetic flux can be anchored
in molecular clouds. The timescale of the small-scale dynamo in the hot phase is
�/u0 ≈ 106 yr for u0 = 40 km s−1 and � = 0.04 kpc (the width of the hot, “chim-
neys” extended vertically in the disc). This can be shorter than the advection time
due to the vertical streaming, h/Uz ≈ 107 yr with h = 1 kpc and Uz = 100 km s−1.
Therefore, the small-scale dynamo action should be possible in the hot gas. How-
ever, the growth time of the mean magnetic field must be significantly longer than
�/u0, reaching a few hundred Myr. Thus, the hot gas can hardly contribute signif-
icantly to the mean-field dynamo action in the disc and can drive the dynamo only
in the halo (Sokoloff & Shukurov, 1990). The main role of the fountain flow in the
disc dynamo is to enhance magnetic connection between the disc and the halo (see
Section 7.4.3).
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7.4.3. MAGNETIC HELICITY BALANCE IN THE GALACTIC DISC

Conservation of magnetic helicity χ = 〈A · B〉 (where B = ∇ × A) in a perfectly
conducting medium has been identified as an important constraint on mean-field dy-
namos that plausibly explains the catastrophic quenching of the α–effect discussed
elsewhere in this volume (Blackman & Field, 2000; Kleeorin et al., 2000, 2003;
Brandenburg & Subramanian, 2005). In a closed system, magnetic helicity can only
evolve on the (very long) molecular diffusion timescale; in galaxies, this timescale
by far exceeds the Hubble time. The large-scale galactic magnetic fields have sig-
nificant magnetic helicity of the order of LBsBφ ≈ −1

4
LB2, where L >∼1 kpc is the

field scale, Bs/Bφ = tan pB with pB ≈ −15◦ the magnetic pitch angle. Since the
initial (seed) magnetic field was weak, and so had negligible magnetic helicity, the
large-scale magnetic helicity in a closed system must be balanced by the small-scale
helicity of the opposite sign, ≈ �hb2, where �h is an appropriate dominant scale of
magnetic helicity. This immediately results in an upper limit on the steady-state
mean magnetic field (Brandenburg & Subramanian, 2005, and references therein)

B
2

b2
<∼4

�h

L
≈ 0.4 , (7.24)

where the numerical value is obtained for �h = 0.1 kpc and L = 1 kpc. The re-
sult of Vainshtein & Cattaneo (1992), B

2
/b2 ∼ Rm−1/2 is recovered for �h ∼

LRm−1/2. The observed relative strength of the mean field in spiral galaxies is
given by B

2
/b2 ≈ 0.5. The upper limit on the strength of the mean magnetic field

(7.24) appears to be much lower than the observed field only if �h � 0.1 kpc. For
�h = 0.1 kpc, the observed field strength is compatible with magnetic helicity con-
servation.

Blackman & Field (2000) and Kleeorin et al. (2000) suggested that the losses of
the small-scale magnetic helicity through the boundaries of the dynamo region play
the key role in the mean-field dynamo action. This is an appealing idea, especially
because the mean-field dynamos rely on magnetic flux loss through the boundaries
(Section 9.II in Zeldovich et al., 1983; Section VII.5 in Ruzmaikin et al., 1988).
A similar situation occurs with the magnetic moment, which is a conserved quan-
tity, and it only grows in a dynamo system of a finite size because the dynamo just
redistributes it expelling magnetic moment out from the dynamo active region (Mof-
fatt, 1978). However, these are the mean magnetic flux and moment that need to be
transferred through the boundaries. Transport by turbulent magnetic diffusion is suf-
ficient for these purposes. The new aspect of the magnetic helicity balance is that
healthy mean-field dynamo action requires asymmetry between the transports of the
magnetic helicities of the large- and small-scale magnetic fields.

A useful framework to assess the effects of magnetic helicity flow through the
boundaries of the dynamo region was proposed by Brandenburg et al. (2002) who
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have presented the balance equation of magnetic helicity in the form

dχB

dt
+

dχb

dt
= −2ηχJ − 2ηχj − QB − Qb , (7.25)

where χB = 〈A · B〉 and χb = 〈a · b〉 are the magnetic helicities of the mean
and random magnetic fields, respectively, η is the molecular magnetic diffusivity,
χJ = J · B and χj = 〈j · b〉 are the current helicities (with J = ∇ × B the
current density). The first two terms on the right-hand side of equation (7.25) are
responsible for the Ohmic losses whereas the last two terms represent the boundary
losses. For illustrative purposes and following Brandenburg et al. (2002), we adopt
the following assumptions:

(i) The magnetic fields are fully helical, so MB = 1
2
kB|χB| and Mb = 1

2
kb|χb|,

where MB and Mb are the average energy densities of the mean and random
magnetic fields and kB and kb are their wavenumbers, respectively. Further-
more, χJ = k2

BχB and χj = k2
bχb.

(ii) The mean and random magnetic fields have widely separated scales, kB � kb.

(iii) Approximate equipartition is maintained between the mean and random mag-
netic fields, MB ≈ Mb.

Then
∣∣∣∣χB

χb

∣∣∣∣ =
kb

kB

MB

Mb

=
k2

b

k2
B

χJ

χj

,

and so |χB| � |χb| and |χJ | � |χj|. Assuming for definiteness that χB, χJ > 0,
we have χb, χj < 0, and (7.25) can be approximated by

dMB

dt
= 2ηkbkBMb + 1

2
kB(QB + Qb) . (7.26)

It is important to note that the effective advection velocities for the large-scale and
small-scale magnetic fields are not equal to each other. Both small-scale and large-
scale magnetic fields are advected from the disc by the galactic fountain flow. With
a typical vertical velocity of order Uz = 100–200 km s−1 and the surface covering
factor of the hot gas f = 0.2–0.3, the effective vertical advection speed is fUz = 30–
70 km s−1. However, the large-scale magnetic field is subject to turbulent pumping
(turbulent diamagnetism). Given that the turbulent magnetic diffusivity in the disc
and the halo are η

(d)
T = 1026 cm2 s−1 and η

(h)
T = 2 × 1027 cm2 s−1 (Poezd et al.,

1993), respectively, and that the transition layer between the disc and the halo has
a thickness of Δz = 1 kpc, the resulting advection speed is −Ud = 1

2
|∇ηT| ≈ 2–

3 km s−1. Thus, the vertical advection velocities of the large-scale and small-scale
magnetic fields are fUz + Ud and fUz, respectively.
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Now we can estimate the magnetic helicity fluxes through the disc surface as

QB = −
(

UB +
1

kBτη

)
MB , Qb = UbMb , (7.27a,b)

where τη = 1/(4ηTk2
B) is the timescale of the (turbulent) diffusive transport of the

mean magnetic field through the boundary, and UB and Ub are effective advection ve-
locities for the large-scale and small-scale magnetic helicities, respectively. The lat-
ter can be estimated from the following arguments. Consider advection of magnetic
field through the disc surface z = h by a flow with a speed U , ∂tB

2
= −U∂zB

2
.

Assuming for simplicity that U is independent of z, we obtain by integration over z:
2hṀB = −2UB

2
(h), where MB = (2h)−1

∫ h

−h
B

2
dz. With MB = −kBχB/2,

this shows that advection of magnetic field at a speed U produces the large-scale
helicity loss at a rate χ̇B ≡ QB = (2U/kBh)B

2
(h). Here B(h) is the large-scale

field strength at the disc surface, which is given by B
2
(h) ≡ ξMB, where ξ < 1

because the large-scale magnetic field at the surface must be weaker than that deep
in the disc. For example, we have ξ � 1 for vacuum boundary conditions, where
Bφ(h) = 0 and so

UB =
2ξ

kBh
(fUz + Ud) . (7.28)

Unlike the large-scale magnetic field, the small-scale magnetic fields are not neces-
sarily weaker at the disc surface, so similar arguments yield

Ub =
2

kbh
fUz �= UB .

Thus, there are several reasons for the magnetic helicity fluxes through the disc
surface to be different at small and large scales: most importantly, the large-scale
magnetic field at the surface can be much smaller than that deep in the disc (ξ � 1)
and, in addition, turbulent diamagnetism introduces further difference (Ud �= 0).

Equation (7.26) has the following solution

MB

Mb

=
4ηkb + Ub

4ηTkB + UB

{
1 − exp

[
−1

2

(
1

τB

+ kBUB

)
t

]}
, (7.29)

which satisfies the initial condition MB(0) = 0.

For t � τB, this solution captures the exponential growth of the mean magnetic
field at a timescale τB, MB ∝ t/2τB .

For UB = Ub = 0, we obtain MB/Mb ≈ ηkb/ηTkB ∼ Rm−1 for t → ∞ – this cor-
responds to the catastrophic quenching of the α–effect associated with approximate
magnetic helicity conservation in a medium with (weak) Ohmic losses alone.
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Figure 7.5 - (a) The pitch angle of magnetic field in the galaxy M31 as obtained
from radio polarisation observations (circles with error bars) (Fletcher et al., 2004),
and from (7.33) using the rotation curve of Deharveng & Pellet (1975) and Haud
(1981) (dashed) and Braun (1991) (dotted); h(r) is twice the H I scale height of
Braun (1991). Results from a nonlinear dynamo model for M31 (Beck et al., 1998)
are shown with solid line. (b) The rotation curve of M31 from Deharveng & Pellet
(1975) and Haud (1981) (solid) and from Braun (1991) (dashed).

However, for Ub � 4ηkb (a condition safely satisfied for any realistically small η)
and UB � 4ηTkB ≈ 8 km s−1, we obtain

MB

Mb

∣∣∣∣
t→∞

=
Ub

UB

∼ kB

ξkb

≈ 1

10ξ
, (7.30)

where we recall that ξ < 1 and neglect Ud. Thus, states with MB ≈ Mb cannot
be excluded, and this equipartition state is reached at the timescale of order τB ≈
4 × 108 yr.

These arguments suggest that the growth rate of the mean magnetic field is limited
from above by the flux of the mean magnetic helicity through the boundary of the
dynamo region, whereas the upper limit for its steady state strength is controlled
by the rate at which the small-scale magnetic helicity is transferred through the
boundaries, equation (7.30).

Another limit on the mean field strength arises from the balance of the Lorentz and
Coriolis forces in the disc, equation (7.23). The steady-state strength of the mean
magnetic field is the minimum of the two values. These arguments suggest that the
restrictions on the mean-field dynamo action from magnetic helicity conservation
can be removed as soon as one allows for the disc-halo connection and fountain
flows in spiral galaxies. Of course, these heuristic arguments have to be confirmed
by quantitative analysis.
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7.5. OBSERVATIONAL EVIDENCE FOR THE ORIGIN
OF GALACTIC MAGNETIC FIELDS

7.5.1. MAGNETIC PITCH ANGLE

Regular magnetic fields observed in spiral galaxies have field lines in the form of
a spiral with a pitch angle in the range pB = −(10◦–30◦), with negative values
indicating a trailing spiral (e.g. Beck et al., 1996). As discussed in Section 7.4.1,
the value of the pitch angle is a useful diagnostic of the mechanism maintaining the
magnetic field.

Consider the simplest from of mean-field dynamo equations (7.10a,b) appropriate
for a thin galactic disc, but now written in terms of dimensional variables for Bs and
Bφ:

∂Bs

∂t
= − ∂

∂z
(αBφ) + ηT

∂2Bs

∂z2
,

∂Bφ

∂t
= GBs + ηT

∂2Bφ

∂z2
. (7.31a,b)

Any regular magnetic field maintained by the dynamo must have a non-zero pitch
angle: for Bs ≡ 0 (a purely azimuthal magnetic field), equation for Bφ in (7.31a,b)
reduces to a diffusion equation ∂Bφ/∂t = ηT∂2Bφ/∂z2 which only has decaying
solutions, Bφ ∝ exp(−ηTt/h2). The same applies to a purely radial magnetic field.

Consider exponentially growing solutions, Bs,φ = Bs,φexp(γt), and replace ∂z by
1/h and ∂zz by −1/h2 (as in the “no–z” approximation) to obtain from (7.31a,b)
two algebraic equations,(

γ + ηT/h2
)
Bs + αBφ/h = 0 , −GBs +

(
γ + ηT/h2

)
Bφ = 0 , (7.32a,b)

which have non-trivial solutions only if the determinant vanishes, which yields (γ +
ηT/h2)2 ≈ −αG/h, and (7.22) follows with Dcr = 1. The resulting estimate of the
magnetic pitch angle is given by

tan pB =
Bs

Bφ

≈ −
√

α

−Gh
= −

√
Rα

|Rω|
∼ − �

h

∣∣∣∣∂ ln Ω

∂ ln s

∣∣∣∣−1/2

. (7.33)

For �/h ≈ 1/4 and a flat rotation curve, ∂ln Ω/∂ln s = −1 , we obtain pB ≈ −15◦,
and this is the middle of the range observed in spiral galaxies. More elaborate treat-
ments discussed by Ruzmaikin et al. (1988b) confirm this estimate of pB and yield a
more accurate value of Dcr. For example, the perturbation solution of Section 7.4.1
yields

pB ≈ −1

2
π1/2

√
Rα

|Rω|
. (7.34)
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If the steady state is established by reducing Rα to its critical value as to obtain
RαRω = Dcr, then the pitch angle in the nonlinear steady state becomes

tan pB ≈ −1

2
π1/2

√
|Dcr|
|Rω|

. (7.35)

The magnetic pitch angle in M31 determined from observations and dynamo theory
is shown in Figure 7.5. Although the model curves show noticeable differences
from the observed pitch angles, the general agreement is encouraging. The situation
is typical: magnetic pitch angles of spiral galaxies are in a good agreement with
predictions of dynamo theory (Beck et al., 1996).

This picture does not explain why the pitch angles of galactic magnetic fields are in-
variably close (though not equal) to those of the spiral pattern in the parent galaxy. A
plausible explanation is that magnetic pitch angles are further affected by streaming
motions associated with the spiral pattern to make the match almost perfect (Moss,
1998). We note, however, that the pitch angle of the large-scale magnetic field near
the Sun differs significantly from that of the local (Orion) arm; it is not clear whether
this misalignment is of a local or global nature.

As shown by Moss et al. (2000), magnetic pitch angle can be affected by an axisym-
metric radial inflow (as well as outflow):

tan pB ≈ −1

2
π1/2

√
Rα

|Rω|

(
1 − 1

2
R

√
π

−D

)
, where R =

h2

2ηT

(
us

s
− ∂us

∂s

)
,

which is useful to compare with equations (7.33) and (7.34). This effect is important
if us >∼2ηT/h ≈ 1 km s−1 (cf. Section 7.5.5).

Twisting of a horizontal primordial magnetic field by galactic differential rotation
leads to a tightly wound magnetic structure with magnetic field direction alternating
with radius at a progressively smaller scale Δs ∼ s0/|G|t with tan pB ∼ −(|G|t)−1,
where s0 ≈ 10 kpc is the scale of variation in Ω (see Section 3.3 in Moffatt, 1978;
Kulsrud, 1999 for a detailed discussion). The winding-up proceeds until a time
t0 ≈ 5× 109 yr such that |G|t0 ∼ |Cω|1/2, where Cω = Gs2

0/ηT = Rωs2
0/h

2 ≈ 103–
104. At later times, the alternating magnetic field rapidly decays because of diffusion
and reconnection. The resulting maximum magnetic field strength achieved at t0 is
given by

Bmax ∼ B0|Cω|1/2 , (7.36)

where B0 is the external magnetic field; the magnetic field reverses at a small radial
scale Δs ∼ s0|Cω|−1/2 ≈ 0.1 kpc. The magnetic pitch angle at t0 is of the order of
|pB| ∼ |Cω|−1/2 <∼1◦, i.e. much smaller than the observed one. This picture cannot
be reconciled with observations (cf. Kulsrud, 1999). It can be argued that streaming
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motions could make magnetic lines more open and parallel to the galactic spiral
arms. However, then magnetic field will reverse on a small scale not only along
radius, but also along azimuth. Such magnetic structures are quite different from
what is observed. The moderate magnetic pitch angles observed in spiral galaxies
are a direct indication that the regular magnetic field is not frozen into the interstellar
gas and has to be maintained by the dynamo (Beck, 2000).

7.5.2. THE EVEN (QUADRUPOLE) SYMMETRY
OF MAGNETIC FIELD IN THE MILKY WAY

One of the most convincing arguments in favour of the galactic dynamo theory
comes from the symmetry of the observed regular magnetic field with respect to the
Galactic equator in the Milky Way. The direction of the magnetic field is determined
from Faraday rotation measures of the cosmic sources of polarised emission, pulsars
and extragalactic radio sources. Since the Galactic magnetic field has a significant
random component and extragalactic radio sources can have their own (intrinsic)
Faraday rotation, any meaningful conclusions about the Galactic magnetic field must
rely on statistically significant samples of Faraday rotation measures. Even though
the quadrupole symmetry of the galactic magnetic fields has been widely accepted
as a firmly established fact since mid-1970’s, its objective observational verifica-
tion has been obtained only recently. The main problem here is that it is difficult
to separate local (small-scale) and global magnetic structures in the observed pic-
ture. However, wavelet analysis of the Faraday rotation measures of extragalactic
radio sources has definitely confirmed that the horizontal components of the local
regular magnetic field have even parity being similarly directed on both sides of the
midplane (Frick et al., 2001, see Figure 7.5.1).

The quadrupole symmetry is naturally explained by dynamo theory where even par-
ity is strongly favoured against odd parity because the even field has twice larger
scale in the vertical coordinate (see Section 7.4.1).

Primordial magnetic field twisted by differential rotation can have even vertical sym-
metry if it is parallel to the disc plane. However, then the field is rapidly destroyed
by twisting and reconnection as described in Section 7.5.1. If, otherwise, the pri-
mordial field is parallel to the rotation axis and amplified by the vertical rotational
shear ∂zΩ (which, however, is insignificant within galactic discs, |z| ≤ h), it can
avoid catastrophic decay (Section 3.11 in Moffatt, 1978), but then it will have odd
parity in z, which is ruled out by the observed parity of the Milky Way field.

The derivation of the regular magnetic field of the Milky Way from Faraday rotation
measures of pulsars and extragalactic radio sources, RM, is complicated by the con-
tribution of local magnetic perturbations, so it is difficult to decide which features

© 2007 by Université Joseph Fourier



7.5 – OBSERVATIONAL EVIDENCE FOR THE ORIGIN OF GALACTIC FIELDS 345

90

60

30

0

– 30

– 60

– 90

90 27.5

0

– 90

90

0

–  90
90180 0 270 180
Galactic longitude (degrees)

90180 0 270 180
Galactic longitude (degrees)

G
al

ac
tic

 la
tit

ud
e 

(d
eg

re
es

)
G

al
ac

tic
 la

tit
ud

e 
(d

eg
re

es
)

G
al

ac
tic

 la
tit

ud
e 

(d
eg

re
es

)

90135180 0 27045 315 225 180
Galactic longitude (degrees)

(c)

(b)

(a)

– 24

27.6

– 29

IRMI > 729

IRMI > 512

IRMI > 343

IRMI > 216

IRMI > 125

IRMI > 64

IRMI > 27

IRMI > 8

Figure 7.6 - (a) Faraday rotation measures of 551 extragalactic radio sources from
the catalogue of Simard-Normandin & Kronberg (1980) shown in the (l, b)–plane,
where (l, b) are the Galactic longitude and latitude in a reference frame centred at the
Sun with the Galactic center in the direction l = 0 and Galactic midplane at b = 0.
Positive (negative) RMs are shown with red (blue) circles whose radius indicates
|RM| (rad m−2) as shown to the right of the panel. The lower two panels (b) & (c)
show the wavelet transform of these data at scales 76◦ (b) and 35◦ (c) (Frick et al.,
2001). The transform at 76◦ has been obtained with the region of the Radio Loop I
removed (this radio feature is a nearby supernova remnant). The wavelet transform
at the scale 35◦
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of the RM sky are due to the regular magnetic field and which are produced by lo-
calised magneto–ionic perturbations (e.g. supernova remnants). Therefore, the same
observational data have lead different authors to different conclusions (see Frick et
al., 2001, for a review). Odd parity of the Galactic magnetic field has been sug-
gested by Andreassian (1980, 1982) and, for the inner Galaxy, by Han et al. (1997).
Quantitative methods of analysis (as opposed to the “naked-eye” fitting of more or
less arbitrarily selected models) are especially appropriate in this case.

Unfortunately, it is difficult to determine the parity of magnetic field in external
galaxies. In galaxies seen edge-on, the disc is depolarised, whereas Faraday rota-
tion in the halo is weak. Beck et al. (1994) found weak evidence of even magnetic
parity in the lower halo of NGC 253. The arrangement of polarisation planes in the
halo of NGC 4631 (Beck, 2000) is very suggestive of odd parity, but this does not
exclude even parity in the disc. In galaxies inclined to the line of sight, the amount
of Faraday rotation produced by an odd (antisymmetric) magnetic field differs from
zero because Faraday rotation and emission occur in the same volume; as a result,
emission originating in the far half of the galactic layer will have small or zero net
rotation (because B‖ has a reversal in the middle of the layer), whereas emission
from the near half will have significant rotation produced by the unidirectional mag-
netic field in that half. Therefore, Faraday rotation measures produced by even and
odd magnetic structures of the same strength only differ by a factor of two (Krause
et al., 1989a; Sokoloff et al., 1998) and it is difficult to distinguish between the two
possibilities.

An interesting method to determine the parity of magnetic field in an external galaxy
has been suggested by Han et al. (1998). These authors note that the contribution of
the galaxy to the RM of a background radio source will be equal to the intrinsic RM
of the galaxy if the magnetic field has even parity. For odd parity, the galaxy will
not contribute to the RM of a background source, whereas any intrinsic RM will
remain. The implementation of the method requires either a statistically significant
sample of background sources or a single extended background source.

7.5.3. THE AZIMUTHAL STRUCTURE

Non-axisymmetric magnetic fields in a differentially rotating object are subject to
twisting and enhanced dissipation as described in Section 7.5.1. The dynamo can
compensate for the losses, but axisymmetric magnetic fields are still easier to main-
tain (Rädler, 1986). A few lowest non-axisymmetric modes with azimuthal wave
numbers

m <∼
s0

h
|Rω|−1/4 ≈ 2 (7.37)
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can be maintained in thin galactic discs where h � s0 (Section VII.8 in Ruz-
maikin et al., 1988). The WKBJ solution of the galactic αω–dynamo equations
by Starchenko & Shukurov (1989) shows that the bisymmetric mode (m = 1) can
grow provided

u

�Ω

(
h

�

)2 ∣∣∣∣d ln Ω

d ln s

∣∣∣∣ <∼25 ,

which seems to be the case in some galaxies. These results indicate that it is natural
to expect significant deviations from axial symmetry in magnetic fields of many spi-
ral galaxies. However, the dominance of non-axisymmetric modes in most galaxies
would be difficult to explain because the axisymmetric mode has the largest growth
rate under typical conditions.

Early interpretations of Faraday rotation in spiral galaxies were in striking contrast
with this picture, indicating strong dominance of bisymmetric magnetic structures
(m = 1), B ∝ exp (iφ) with φ the azimuthal angle (Sofue et al., 1986), and this
was considered to be a severe difficulty of the dynamo theory and an evidence of
the primordial origin of galactic magnetic fields. It was suggested by Ruzmaikin
et al. (1986) (see also Sawa & Fujimoto, 1986; Baryshnikova et al., 1987) that the
bisymmetric magnetic structures can be interpreted as the m = 1 dynamo mode.
However, despite effort, dynamo models could not explain the apparent widespread
dominance of bisymmetric magnetic structures. Paradoxically, what seemed to be
a difficulty of the dynamo theory has turned out to be its advantage as observa-
tions with better sensitivity and resolution and better interpretations have led to a
dramatic revision of the observational picture. The present-day understanding is
that modestly distorted axisymmetric magnetic structures occur in most galaxies,
wherein the dominant axisymmetric mode is mixed with weaker higher azimuthal
modes (Beck et al., 1996; Beck, 2000). Among nearby galaxies, only M81 remains
a candidate for a dominant bisymmetric magnetic structure, but the data are old and
this result needs to be reconsidered (Krause et al., 1989b); the interesting case of
M51 is discussed below. Deviations from precise axial symmetry can result from
the spiral pattern, asymmetry of the parent galaxy, etc. Dominant bisymmetric mag-
netic fields can be maintained by the dynamo action near the corotation radius due
to a linear resonance with the spiral pattern (Mestel & Subramanian, 1991; Subra-
manian & Mestel, 1993; Moss, 1996) or nonlinear trapping of the field by the spiral
pattern (Bykov et al., 1997).

Twisting of a horizontal magnetic field by differential rotation generally produces a
bisymmetric magnetic field, m = 1. Twisting of a horizontal primordial magnetic
field can also produce an axisymmetric configuration near the galactic centre if the
initial state is asymmetric (Sofue et al., 1986; Nordlund & Rögnvaldsson, 2002),
with a maximum of the primordial field displaced from the disc’s rotation axis where
the gas density is normally maximum. Thus, the maximum of the primordial field
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required by this scenario has to occur at a different position than the maximum in
the gas density. This can only happen if the primordial field is not frozen into the gas
– otherwise the field strength scales as a positive power of gas density. The fact that
magnetic fields in most spiral galaxies are nearly axisymmetric within large radius
(in fact, in the whole galaxy) would require that this strong asymmetry in the initial
state occurs systematically for all the galaxies, which would be difficult to explain.

7.5.4. A COMPOSITE MAGNETIC STRUCTURE IN M51
AND MAGNETIC REVERSALS IN THE MILKY WAY

A striking example of a complicated magnetic structure that can hardly be explained
by any mechanism other than the dynamo has been revealed in the galaxy M51 by
Berkhuijsen et al. (1997). These authors used radio polarisation observations of
the galaxy at wavelengths 2.8, 6.2, 18.0 and 20.5 cm (smoothed to a resolution of
3.5 kpc). The disc of this galaxy is not transparent to polarised radio emission at the
two longer wavelengths. Therefore, it was possible to determine the magnetic field
structure separately in two regions along the line the sight, which can be identified
with the disc and halo of the galaxy. As shown in Figure 7.7, the regular magnetic
fields in the disc is reversed in a region about 3 by 8 kpc in size extended along
azimuth at galactocentric radii s = 3–6 kpc and azimuthal angles 300◦–0 (shown
with red arrows). A significant deviation from axial symmetry in the disc has been
detected out to s = 9 kpc (in the azimuth range 160–260◦), although it is too weak
to result in a magnetic field reversal. The field reversal occurs around the corotation
radius in M51, s ≈ 6 kpc (i.e. the radius where the angular velocity of the spiral
pattern is equal to that of the gas).

A nonlinear dynamo model for M51 was developed by Bykov et al. (1997) who
used the rotation curve of M51, with the pitch angle of the spiral arms −15◦ and
corotation radius 6 kpc . Figure 7.7 shows one of their solutions where a region
with reversed magnetic field persists in the disc near the corotation radius of the
spiral pattern. Near the corotation, a non-axisymmetric (bisymmetric) magnetic field
can be trapped by the spiral pattern and maintained over the galactic lifetime. The
effect is favoured by a smaller pitch angle of the spiral arms, thinner gaseous disc,
weaker rotational shear and stronger spiral pattern. This nonaxisymmetric structure
is arguably similar to the structure observed in M51.

The regular magnetic field in the halo of M51 has a structure very different from
that in the disc – the halo field is nearly axisymmetric and even directed oppositely
to that in the disc in most of the galaxy. An external magnetic field should have a
rather peculiar form to be twisted into such a configuration!

Distinct azimuthal magnetic structures in the disc and the halo can be readily ex-
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Figure 7.7 - The global magnetic
structure of the galaxy M51, in the
disc (a) and halo (b). Arrows show
the direction and strength of the reg-
ular magnetic field on a polar grid
shown superimposed on the optical
image (Berkhuijsen et al., 1997). The
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(c) Magnetic field strength from the
dynamo model for the disc of M51
(Bykov et al., 1997) is shown with
shades of grey (darker shade means
stronger field). Magnetic field is re-
versed within the zero–level contour
shown dashed; scale is given in kpc. The magnetic structure rotates rigidly together

plained by dynamo theory as non-axisymmetric magnetic fields can be maintained
only in the thin disc but not in the quasi-spherical halo where h ≈ s0 and |Rω| � 1
in (7.37). Moreover, dynamo action in the disc and the halo can proceed almost
independently of each other producing distinctly directed magnetic fields (Sokoloff
& Shukurov, 1990).

Another case of a regular magnetic field with unusual structure is the Milky Way
where magnetic field reversals are observed along the galactocentric radius in the
inner Galaxy between the Orion and Sagittarius arms at s ≈ 7.9 kpc and, possibly,
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in the outer Galaxy between the Orion and Perseus arms at s ≈ 10.5 kpc (Sec-
tion 3.8.2 in Beck et al., 1996, and Frick et al., 2001; see, however, Brown & Taylor
2001). The reversals were first interpreted as an indication of a global bisymmetric
magnetic structure (Sofue & Fujimoto, 1983), but it has been shown that dynamo-
generated axisymmetric magnetic field can have reversals at the appropriate scale
(Ruzmaikin et al., 1985; Poezd et al., 1993). Both interpretations presume that
the reversals are of a global nature, i.e. they extend over the whole Galaxy to all
azimuthal angles (or radii in the case of the bisymmetric structure). This leads to
a question why reversals at this radial scale are not observed in any other galaxy
(Beck, 2000). Poezd et al. (1993) argue that the lifetime of the reversals is sensitive
to subtle features of the rotation curve and the geometry of the ionised gas layer (see
also Belyanin et al., 1994) and demonstrate that they are more probable to survive
in the Milky Way than in, e.g. M31.

However, the observational evidence of the reversals is restricted to a relatively small
neighbourhood of the Sun, of at most 3–5 kpc along azimuth. It is therefore quite
possible that the reversals are local and arise from a magnetic structure similar to
that in the disc of M51 as shown in Figure 7.7. The reversed field in the Solar
neighbourhood has the same radial extent of 2–3 kpc as in M51 and also occurs near
the corotation radius. This possibility has not yet been explored; its observational
verification would require careful analysis of pulsar Faraday rotation measures.

7.5.5. THE RADIAL MAGNETIC STRUCTURE IN M31

An important clue to the origin of galactic magnetic fields is provided by the mag-
netic ring in M31 (Beck, 1982), which was predicted by dynamo theory (Ruzmaikin
& Shukurov, 1981). Both the large-scale magnetic field and the gas density in
this galaxy have a maximum in the same annulus 8 <∼ s <∼ 12 kpc, with the ap-
parent enhancement in the magnetic field strength by about 30% (Fletcher et al.,
2004). The kinematic dynamo model of Ruzmaikin & Shukurov (1981) was based
on the double-peaked rotation curve of shown in Figure 7.5, where rotational shear
is strongly reduced at s = 2–6 kpc . As a result, Rω is small and even positive in this
radial range, so |D| < |Dcr| and the dynamo cannot maintain any regular magnetic
field at s = 2–6 kpc .

An attractive aspect of this theory is that both magnetic and gas rings are attributed
to the same feature of the rotation curve. Angular momentum transport by viscous
stress leads to matter inflow at a rate

Ṁ = 2πΣνT(∂ln Ω/∂ln s) ≈ 0.1 M� yr−1 ≈ 6 × 1021 kg s−1 ,

where νT ∼ ηT is the turbulent viscosity, resulting in the radial inflow at a speed
us = Ṁ/2πsΣ with Σ the gas surface density. In the nearly-rigidly rotating parts,
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us is reduced and matter piles up outside such a region producing gas ring. Grav-
itational torques from spiral arms can further enhance the inflow (see Moss et al.,
2000, for a discussion), so the total radial velocity is expected to be us ≈ 1 km s−1

at s = 10 kpc.

The double-peaked rotation curve of M31 is consistent with the existence of both
magnetic and gas rings. The situation is different with the more recent rotation curve
of Braun (1991) which does not have a double-peaked shape (Figure 7.5). The differ-
ence between the two rotation curves arises mainly from the fact that Braun allows
for significant displacements of spiral arm segments from the galactic midplane: this
results in a revision of the segments’ galactocentric distances for regions away from
the major axis. We note that the CO velocity field at the major axis (Loinard et al.,
1995) is compatible with a double-peaked rotation curve.

With Braun’s rotation curve, the magnetic field can concentrate into a ring mainly
because the gas is in the ring and B ∝ ρ1/2 as shown in (7.23). The dynamo model
of Moss et al. (1998) based on the rotation curve of Braun (1991) has difficulties in
reproducing a magnetic ring as well pronounced as implied by the observed amount
of Faraday rotation. This has lead to an idea that magnetic field can be significant
at s = 2–6 kpc in M31. This has prompted Han et al. (1998) to search for magnetic
fields at s = 2–6 kpc that could have escaped detection because of reduced density
of cosmic ray electrons at those radii. These authors have found that two out of three
background polarised radio sources seen through that region of M31 have Faraday
rotation measures compatible with the results of Moss et al. (1998). They further
conclude that this indicates an even symmetry of the regular magnetic field. This is
encouraging, but a statistically representative sample of background sources has to
be used to reach definite conclusions because of their unknown intrinsic RM.

With a double-peaked rotation curve, a primordial magnetic field with a uniform
radial component could have been twisted to produce a magnetic ring by virtue of
(7.36). In this case the primordial and dynamo theories have similar problems and
possibilities regarding the magnetic ring in M31.

Lou & Fan (2000) attribute the magnetic ring in M31 to an axisymmetric mode of
MHD density waves. Because of the axial symmetry of the wave, the magnetic
field in the ring must be purely azimuthal, pB = 0, in contrast to the observed
structure with a significant pitch angle (Figure 7.5). Furthermore, the ring can hardly
represent a wave packet as envisaged in this theory because then its group velocity
must be comparable to the Alfvén velocity of 30 km s−1 (Lou & Fan, 1998) and so
the ring should be travelling at this speed along radius to traverse 30 kpc in 109 yr,
a distance much larger than the ring radius. The implication would be that the ring
is a transient with a short lifetime of order 3 × 108 yr. And, of course, the theory
cannot explain the origin of an azimuthal magnetic field required to launch the wave
packet.

© 2007 by Université Joseph Fourier



352 Anvar SHUKUROV

04’

60°14’

Right ascension (J2000)

13’

12’

11’

10’

09’

08’

07’

20°35’30” 15”

06’

05’

00” 34’45” 30” 15” 20°35’30” 15” 00” 34’45” 30” 15”
Right ascension (J2000)

D
ec

lin
at

io
n 

(J
20

00
)

(a) (b)

Figure 7.8 - (a) Magnetic arms in the galaxy NGC 6946: polarised intensity at the
wavelength λ = 6 cm (blue contours), a tracer of the large-scale magnetic field B,
superimposed on the galactic image in the Hα spectral line of ionised hydrogen
(grey scale). Red dashes indicate the orientation of the B–vector of the polarised
emission (parallel to the direction of intrinsic magnetic field if Faraday rotation is
negligible), with length proportional to the fractional polarisation – see (7.5). The
spiral arms visualised by Hα are the sites where gas density is maximum. The
large-scale magnetic field is evidently stronger between the arms where gas density
is lower. (b) As in the left panel, but now for the total synchrotron intensity, a tracer
of the total magnetic field B2 = B

2
+ b2. The total field is enhanced in the gaseous

arms. Given that the large-scale field concentrates between the arms, this means that
the random field is significantly stronger in the arms, a distribution very different
from that of the large-scale field (images courtesy of R. Beck, MPIfR, Bonn). (See

7.5.6. STRENGTH OF THE REGULAR MAGNETIC FIELD

Interstellar regular magnetic fields are observed to be close to the energy equipar-
tition with interstellar turbulence. This directly indicates that the regular magnetic
field is coupled to the turbulent gas motions. [Note that �Ω does not differ much
from the turbulent velocity u0 in (7.23).] To appreciate the importance of this con-
clusion, consider primordial magnetic field twisted by differential rotation. Its max-
imum strength given by (7.36) as Bmax ≈ 102B0 is controlled by the strength of
the primordial field B0, and so this theory, if applicable, would result in stringent
constraints on extragalactic magnetic fields.

A striking evidence of the nontrivial behaviour of the large-scale galactic magnetic
field are the so-called magnetic arms, discovered by Beck & Hoernes (1996) in the
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nearby galaxy NGC 6946. We show in Figure 7.8 a map of polarised radio emis-
sion from this galaxy (a tracer of the large-scale magnetic field strength) superim-
posed on the map in the Hα spectral line (a tracer of ionised gas). It is evident that
magnetic field is stronger between the spiral arms of this galaxy, i.e. where the gas
density (both total and ionised) is lower. This behaviour is just opposite to what is
expected of a frozen-in magnetic field that scales with a power of gas density. The
phenomenon of magnetic arms confirms in a spectacular manner that the large-scale
magnetic field is not frozen into the interstellar gas, and therefore cannot be primor-
dial. Shukurov (1998), Moss (1998) and Rohde et al. (1999) suggest an explanation
of the magnetic arms in terms of the mean-field dynamo theory. In brief, they ar-
gue that dynamo number can be larger between the gaseous spiral arms, resulting in
stronger dynamo action.

The theory of MHD density waves relates magnetic field excess ΔB in spiral arms to
the enhancement in stellar density, ΔB/〈B〉 = ΔΣ/〈Σ〉 (Lou & Fan, 1998), where
Σ is the stellar surface density, ΔΣ is its excess in the spiral arms, and angular
brackets denote azimuthal averaging. Arm intensities in magnetic field and stellar
surface density in NGC 6946 have been estimated by Frick et al. (2000) who applied
wavelet transform techniques to radio polarisation maps and to the galaxy image
in broadband red light, a tracer of stellar mass density. Their results indicate that
the mean relative intensity of magnetic spiral arms remains rather constant with
galactocentric radius at a level of 0.3–0.6. On the contrary, the relative strength of
the stellar arms systematically grows with radius from very small values in the inner
galaxy to 0.3–0.7 at s = 5–6 kpc, and then decreases to remain at a level of 0.1–0.3
out to s = 12 kpc. The distinct magnitudes and radial trends in the strengths of
magnetic and stellar arms in NGC 6946 do not seem to support the idea that the
magnetic arms are due to MHD density waves.

7.6. ELLIPTICAL GALAXIES

Elliptical galaxies do not rotate fast enough, so they are ellipsoidal systems with-
out prominent disc components. The stellar population of elliptical galaxies is old
and the interstellar gas is dilute (Mathews & Brighenti, 2003). Therefore, both rel-
ativistic and thermal electrons have low density, and any synchrotron emission and
Faraday rotation can only be weak. Nevertheless, there are several lines of evidence,
albeit mostly indirect, suggesting significant magnetic fields in ellipticals (Moss &
Shukurov, 1996; Mathews & Brighenti, 1997). The magnetic field should be ran-
dom, producing unpolarised synchrotron emission and fluctuating Faraday rotation.
The root mean square (r.m.s.) Faraday rotation measure attributable to the ISM of
the ellipticals is σRM = 5–100 rad m−2.
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7.6.1. TURBULENT INTERSTELLAR GAS
IN ELLIPTICAL GALAXIES

Interstellar gas in elliptical galaxies is observed via its X-ray emission. Type I super-
novae (SNe) (and also stellar winds and random motions of stars) heat the gas to the
observed temperatures T ≈ 107 K. It is natural to expect that a fraction δ of the en-
ergy is converted into turbulent motions of the gas. The turbulent scale � ≈ 400 pc
is given by the diameter of a SN remnant as it reaches pressure balance with the
ambient medium whose typical density is n ≈ 10−3 cm−3. The balance between
energy injection and dissipation rates yields a turbulent velocity of u0 ≈ 20 km s−1

for δ = 0.1, assuming the energy dissipation time τ ≈ �/u0 as for the Kolmogorov
turbulence. This estimate of u0 is compatible with the constraint u0 <∼ 50 km s−1

resulting from the observed X-ray luminosity. Another driver of turbulence is the
random motions of stars. These generate random vortical motions at a smaller scale
and velocity, �∗ ≈ 3 pc and u∗ ≈ 3 km s−1, respectively (Moss & Shukurov, 1996).

The driving force produced by an expanding quasi-spherical SN remnant is poten-
tial. The above estimates assume that the motions driven by the SNe are vortical, so
τ = �/u0 applies. In spiral galaxies, the potential (acoustic) motions are efficiently
converted into vortical turbulence mainly due to the inhomogeneity of the ISM. The
ISM in elliptical galaxies is hot and, presumably, rather homogeneous at kpc scales.
Therefore, Moss & Shukurov (1996) suggested that SNe will drive sound-wave tur-
bulence whose correlation time τ is (u0/cs)

−2�/cs ≈ 3 × 107 yr rather than �/u0,
where cs ≈ 300 km s−1 is the speed of sound. However, Mathews & Brighenti
(1997) noted that sound waves quickly dissipate, and so cannot form a pervasive
turbulent velocity field. The nature of turbulence in elliptical galaxies needs to be
studied further.

7.6.2. THE FLUCTUATION DYNAMO IN ELLIPTICAL GALAXIES

As in most astrophysical objects, Rm in elliptical galaxies by far exceeds 100, so
fluctuation dynamo action in ellipticals is quite plausible (see Section 7.4.2). The e-
folding time of the random field in a vortical random flow is of the order of the eddy
turnover time, τ = 2×107 yr. The magnetic field is concentrated into flux ropes and
ribbons whose length and thickness are of order � ≈ 400 pc and � Rm−1/2

cr ≈ 40 pc.
In the ropes, magnetic field is plausibly in equipartition with the turbulent kinetic
energy, b ≈ 0.3 μG.

Moss & Shukurov (1996) discuss a two-stage dynamo action by smaller scale vor-
tical turbulence driven by random motions of the stars and, at larger scales, by the
acoustic turbulence. However, the very existence of the acoustic turbulence in ellip-
tical galaxies is questionable (Mathews & Brighenti, 1997).
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Faraday rotation measure produced within a single turbulent cell with the above
parameters is RM0 ≈ 0.81bne�, so the net Faraday rotation from an ensemble of
turbulent cells, observed at a resolution D such that D � �, is given by σRM ∼
RM0

√
N/ND ∼ RM0

√
L�/D , where N = L/� is the number of cells along the

path length L and ND = (D/�)2 is the number of cells in the resolution element.
Thus, RM0 ≈ 0.1 rad m−2 and σRM ≈ 1 rad m−2. Faraday rotation can be stronger
in the central regions where σRM ≈ 5 rad m−2 at a distance 8 kpc from the galactic
centre. These estimates agree fairly with the available observations.

Magnetic field generation in elliptical galaxies was discussed by Lesch & Bender
(1990), but they considered a mean-field dynamo that needs overall rotation which
is not present in elliptical galaxies. The fluctuation dynamo in elliptical (radio)
galaxies was simulated by De Young (1980), but these simulations apparently had
Rm < Rmcr as they resemble transient amplification of magnetic field by velocity
shear rather than genuine dynamo action.

7.7. ACCRETION DISCS

Accretion discs represent another type of flat, rotating astrophysical objects, where
magnetic fields are involved in or drive many important processes. The defining
property of the accretion disc is a systematic radial flow of matter which often feeds
activity at a massive central object (a protostar, compact star, of black hole). The
mass of the disc is usually negligible in comparison with that of the central object.
The gas in the disc is usually cool enough for its radial pressure gradient to be neg-
ligible, so that the gas rotation in nearly Keplerian, Ω ∝ s−3/2. The disc thickness
is controlled by hydrostatic equilibrium in the gravitational field of the central ob-
ject; if the disc is cool, it is then very thin far enough from the centre. Accretion
discs have to be turbulent to provide the accretion rate implied by the central ac-
tivity observed. Altogether, accretion discs are turbulent, rotating, stratified objects
and, thus, they can (or even must) be a site of dynamo activity at both large and
small scales (if only the gas is ionised); the theory of disc dynamos presented above
can be readily applied to these objects. In fact, accretion flows, at a speed of or-
der 1 km s−1, are common in spiral galaxies as well, where they are driven mostly
by the nonaxisymmetric gravitational torque of the stellar spiral arms (Moss et al.,
2000, and references therein).

Pudritz (1981a,b) developed an αω–dynamo model for accretion discs, and Stepin-
ski & Levy (1991) and Mangalam & Subramanian (1994a,b) discussed a thin-disc
asymptotic solution similar to that discussed in Section 7.4.1 above (in the form
suggested by Ruzmaikin et al., 1985, 1988). MHD simulations of accretion discs
performed by Brandenburg et al. (1995) and Stone et al. (1996) confirmed the ef-
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ficiency of dynamo action and showed that the turbulence can be driven by the
magneto–rotational instability mediated by the magnetic field. Numerical simula-
tions of an outflow from an accretion disc that hosts a mean-field dynamo confirmed
that the dynamo can produce a magnetic configuration suitable for launching vig-
orous outflows that occur near accretion discs (von Rekowski et al., 2003; Moss &
Shukurov, 2004; see below). Campbell (1999, 2000, 2001, 2003) and Campbell &
Caunt (1999) discuss accretion disc models and disc winds based on magnetic fields
produced by the mean-field dynamo. The role of dynamos in accretion discs is dis-
cussed by Brandenburg & Subramanian (2005) and Pudritz et al. (2006). The effects
of accretion on galactic dynamos are discussed by Moss et al. (2000) and Moss &
Shukurov (2001); the effects of vertical outflows on mean-field disc dynamos are
explored by Bardou et al. (2001).

It might seem that the flow of matter towards the disc axis would lead to additional
enhancement of magnetic field and therefore facilitate the dynamo action. How-
ever, this is not true: radial flow in a thin disc reduces the growth rate of the mean
magnetic field (Moss et al., 2000). Without any significant field at infinity (an ap-
propriate condition for a dynamo system), the dynamo has to replenish magnetic
field advected by the radial flow away from the region where it is generated most
efficiently; this hampers the dynamo action. Magnetic field compression cannot
counterbalance this effect. A noticeable effect of the compression is to produce a
sharper peak in magnetic field strength at smaller radii. As shown by Moss et al.
(2000), an additional radial velocity Us reduces the local growth rate γ(s) in the
radial dynamo equation (7.17) which is modified as γ(s) → γ(s) − 1

4
(Ush0/ηT)2.

Thus, both inflow and outflow reduce the growth rate and hence suppress the dy-
namo action. Moss et al. (2000) suggest that the suppression of the dynamo action
by radial flows driven by magnetic stress can saturate the dynamo independently of
other nonlinearities; their estimate of the corresponding steady-state mean magnetic
field due to this effect alone is about 10 μ G in the galactic context, which is only
slightly larger than what is observed in spiral galaxies. This indicates that this non-
linear effect may contribute significantly to the saturation of the dynamo, especially
in the inner parts of galaxies.

An interesting feature of accretion-disc dynamos is that turbulence in accretion discs
is driven by the magneto–rotational instability which itself relies on the presence of
magnetic field. Brandenburg (2000) (see also section 11.4 in Brandenburg & Sub-
ramanian, 2005) argue that this results in the sign of the α–effect which is opposite
to that in planets, stars and galaxies, i.e. α < 0 for z > 0. Therefore, the dominant
mean-field dynamo mode in the accretion discs has dipolar parity, which is believed
to be more favourable for launching disc wind.

An important role played by magnetic fields in accretion discs is to drive a wind
and also to collimate it into a narrow jet; such jets are observed in a large number
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of radio galaxies and, at much smaller scales, in protostellar objects. A large-scale
magnetic field anchored in the accretion disc is a keystone of most models of disc
winds and jets (Königl & Pudritz, 2000; Pudritz et al., 2006, and references therein).
It is usually assumed that magnetic field required to launch and collimate the out-
flows is a large-scale external magnetic field captured and then deformed into an
hour-glass shape by the accreting gas. Since dynamos normally produce magnetic
fields whose field lines close within the immediate vicinity of the disc, it is often
assumed that magnetic configurations produced by the dynamo cannot support an
outflow extending to the very large distances observed (Pelletier & Pudritz, 1992;
section V.B in Königl & Pudritz, 2000). However, numerical simulations of von
Rekowski et al. (2003) show that a dynamo-generated magnetic field can support a
vigorous outflow, provided the field can be opened up by, say, a thermally driven
wind.

Otherwise, the dynamo-generated magnetic field can be opened up by external mag-
netic fields. Accretion discs around protostellar objects can reasonably be expected
to occur in strongly magnetised interstellar environment, so that it is not unrea-
sonable to assume that there exists a strong external magnetic field ordered at scales
much larger than the disc size. However, this assumption is much more questionable
in the case of extragalactic jets whose length can be as large as hundreds kiloparsecs:
the existence of magnetic fields at such scales is not supported by any observational
or theoretical evidence. Moreover, it is unclear whether an external magnetic field
can be dragged into the disc given the large magnitude of the effective (turbulent)
magnetic diffusivity compatible with the turbulent nature of the disc. Since the
large-scale dynamo action in most types of accretion discs seems to be unavoidable,
interaction of an external magnetic field with the disc dynamo has to be considered,
and wind launching in the resulting composite magnetic configurations has to be
explored.

It was suggested by Reyes-Ruiz & Stepinski (1997) and Reyes-Ruiz (2000) that an
external magnetic field can open magnetic lines of a field produced by the mean-
field disc dynamo to make the magnetic configuration suitable for the magneto–
centrifugal wind launching. However, these authors used a simple superposition of
a dynamo-generated magnetic field and a uniform external field; this only makes
sense for kinematic dynamos and neglects any effect of the external magnetic field
on the dynamo action. A nonlinear mean-field dynamo model in an accretion disc
embedded into an external magnetic field (that can be dragged into the disc by the
accretion flow) was explored by Moss & Shukurov (2004) who showed that a rel-
atively weak external magnetic field can open up magnetic lines produced by the
dynamo. Magnetic fields in the inner parts of the disc are opened first (i.e. for a
weaker external field); even for a relatively weak external magnetic field (whose
energy density exceeds about only 10% of the thermal energy density in the outer
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parts of the disc), the geometry of the poloidal magnetic field above the disc sur-
face is almost independent of the details of the dynamo model and favourable for
launching a centrifugally driven wind. Remarkably, the radial profile of the poloidal
magnetic field strength on the disc surface is similar to the well-known self-similar
wind solution of Blandford & Payne (1982) if the standard disc model of Shakura
& Sunyaev (1973) is used. This radial profile is also consistent with that obtained
for dipolar modes of kinematic mean-field dynamos from the asymptotic solutions
of Soward (1978, 1992a, 2003).

7.8. CONCLUSIONS

The observational picture of galactic magnetic fields is compatible with the mean-
field dynamo theory in its simplest, quasi-kinematic form. It is important to note
that there is not much freedom in varying parameters of galactic dynamos as ob-
servations constrain them fairly tightly. Therefore, this agreement is not a result of
a free-hand parameter adjustments. Moreover, galactic dynamo theory has demon-
strated its predictive power. For example, it has been clear to dynamo theorists since
the early 1970’s that the partially ionised Galactic disc must have the scale height
0.4–0.5 kpc, i.e. significantly larger than that of the neutral hydrogen layer (see Sec-
tion VI.2 in Ruzmaikin et al., 1988, for a review), but the existence of this compo-
nent of the interstellar medium was accepted by a broader astrophysical community
only 15 years later (Lockman, 1984).

The agreement of the mean-field dynamo theory with observations discussed in Sec-
tion 7.5 cannot be considered as a proof of its correctness – history of physics is
familiar with concepts, such as the ether, that have proved to be irrelevant despite
their perfect agreement with numerous experimental facts, before a single exper-
iment refuted them. Nevertheless, the spectacular success of the dynamo theory
when applied to galaxies warrants its careful treatment when compared with other
theories. In particular, any rival theory has to be able to explain at least the same set
of observational data as the dynamo theory. In this sense, there are no fair rivals to
the dynamo theory.

The main current difficulty of the galactic dynamo theory is our lack of understand-
ing of its nonlinear form. It is important to avoid an unjustified extension to real
galaxies of results obtained for highly idealised systems. In particular, the disc of a
spiral galaxy is not a closed system. The significance of the disc-halo connection for
the mean-field galactic dynamos, touched upon in Section 7.4.3, should be carefully
investigated.

Another outstanding problem in theory and observations of galactic magnetic fields
is the effect of the multi-phase structure of the interstellar medium on the magnetic
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field. The effect of magnetic fields on the multi-phase structure is also expected to
be very significant, and also poorly understood. The strength of the magnetic field
in the hot phase is not known. The detailed nature of the balance between cosmic
rays and magnetic field has to be clarified: it is unclear whether this balance is
maintained pointwise (at each location) or only on average (e.g. at scales exceeding
the diffusion scale of cosmic ray particles). The answer to this question is essential
for the interpretation of the synchrotron emission from spiral galaxies. Progress in
this direction will eventually make theory of galactic magnetic fields an integral part
of galactic astrophysics.
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CHAPTER 8

SURVEY
OF EXPERIMENTAL RESULTS

Philippe Cardin & Daniel Brito

8.1. INTRODUCTION

Magnetohydrodynamic experiments with liquid metals and natural dynamos share
a common property, a very low magnetic Prandtl number (Pm = ν/η, see Chap-
ter2). Typical values of the magnetic Prandtl number for liquid metals in the core
of terrestrial planets are indeed very small (< 10−4), despite the extreme pressure
and temperature conditions (Chapters 4 & 5 and Poirier, 1988). In gaseous plan-
ets, the hydrogen gas presents a metallic phase at large pressure, with again a low
value of Pm (Chapter 5 and Guillot, 1999). Further, both stellar convection zones
(Chapter 6) and diluted gas in magnetospheres are in the low Pm regime. As liquid
metals share this low Pm property, we believe that most of natural dynamos may
be modelled and studied in a laboratory. A number of groups in the world have
therefore focused their liquid experiments on fundamental aspects of the magneto-
hydrodynamics of natural objects.

To date, two experiments using liquid sodium – in Riga (in Latvia) and in Karlsruhe
(in Germany) – have succeeded in observing dynamo action. Sodium was chosen
primarily because it is the highest conductor of electricity among liquid metals at
laboratory conditions. With liquid sodium, it is possible to reach magnetic Reynolds
numbers (Rm = UL/η) of the order of 10 in an experiment of metric size, where
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U is the typical velocity of the fluid, L is the typical scale of the experiment and η
the magnetic diffusivity (see Table VI for numerical values), the velocity and size
being chosen to optimize Rm. The velocity of a fluid inside a container of a given
size is, however, directly related to the mechanical power available to perform the
experiment. In the turbulent regime, the power P may be expressed as the cubic
power of the velocity

P ∝ ρL2 U 3 , (8.1)

where ρ is the density of the fluid, as measured for example in the Riga experiment
(see Section 8.3.6 and Figure 8.15). In the presence of global rotation or other
external forcing, a different scaling of the power may be obtained, but leads to the
same conclusion (Cardin et al., 2002): a huge power of a few hundreds of kilowatts
has to be injected in a metric size experiment of sodium in order to reach values of
Rm of the order of 100. This is why dynamo experiments generally require heavy
infrastructures.

As other liquid metals, liquid sodium has very low magnetic, Pm, and thermal, Pr,
Prandtl numbers (see Table VI). As such the magnetic diffusion is much larger
than thermal diffusion; and thermal diffusion is in turn much larger than viscous
diffusion. It is worth noting that the magnetic diffusion time, τη ∝ L2/η, of an
experimental dynamo of metric size with liquid sodium is of the order of a few
seconds, a very long time compared to the dynamical timescale (the turnover time
for a fluid particle below 10−1 s in a 1 m size dynamo experiment). This means
that if a growing magnetic field is observed for more than a few seconds during an
experiment, this would be sufficient to demonstrate dynamo action. Experiments
performed performed during thousand of magnetic diffusion times are, in principle,
feasible.

The intrinsic molecular properties of liquid metals makes numerical simulations of
magnetohydrodynamic dynamos very difficult. From the low Pr and Pm numbers
associated with liquid metals, one expects the temporal and spatial scales of the
magnetic field, the velocity field, and the temperature field to be very different. As
Rm = RePm, dynamo experiments with large Rm ∼ O(10) will necessarily corre-
spond to a very large hydrodynamic Reynolds number (Re ≈ 107 − 108), meaning
that experimental dynamos will have undoubtedly strong turbulent flows. In pres-
ence of a strong magnetic field, or rotation, the statistical and geometrical proper-
ties of these turbulent magnetohydrodynamic flows may be different from those of
pure hydrodynamical turbulence; for example in the Earth’s core (Chapter 4) the
Reynolds number is presumably very high (Re � 1), but the nonlinear term in the
Navier-Stokes equation is of second order compared to Coriolis and Lorentz forces
[the Rossby number (see page 11) Ro � 1 , and the interaction parameter (see
page 71) N � 1] and therefore the nonlinear chaotic behaviour of the system might
be induced by the nonlinearities in the induction equation or in the energy equation.

© 2007 by Université Joseph Fourier



8.1 – INTRODUCTION 363

As the flows are expected to be turbulent, it might be interesting to consider turbulent
diffusivities to describe small scales in numerical modelling (Glatzmaier & Roberts,
1995; Matsushima et al., 1999; Phillips & Ivers, 2003; Buffett, 2003). However, lit-
tle is known about these processes in magnetohydrodynamics cases and experiments
are certainly needed to check the validity of this idea and to propose scaling laws for
turbulent diffusivities (see discussion in Section 8.3.9). More generally, experiments
are often very useful, as they enable the verification of theoretical considerations or
the confirmation of numerical calculations. Such experiments can also be used to
test the validity of assumptions necessary to understand the physics of dynamos.
A great advantage of experiments as compared to numerical simulations is the fact
they are performed with real liquid metals, with known physical properties. Proper-
ties that are often not achievable in numerical simulations. Such experiments shed
light also on new unexpected effects and new unexpected regimes. However, the
main drawback of the experimental approach is the limitation of the measurements.
Measurements in the bulk of the flow, in which the dynamo process operates, are
particularly problematic. Experiments require an important theoretical and numer-
ical work to complete the understanding of measurements. Note that experiments
with liquid metals can also lead to improvements in technology and instrumentation,
which may indirectly benefit to the industry for example of metallurgy.

We will consider that a dynamo exists when a non-zero magnetic field is solution to
the induction equation [see equation (1.14), Chapter 1]. Clearly, B = 0 is also so-
lution. In the laboratory, it is very difficult to have a strictly zero external magnetic
field around the experiment. The magnetic field of the Earth itself produces a back-
ground magnetic field of few tenths of Gauss (1−5×10−4 T , see Chapter 4). From
a theoretical point of view, it is very difficult to differentiate between a self-sustained
magnetic field of an experimental dynamo from the one produced by a simple ampli-
fication of the ambient field by the velocity flow. The same problem exists regarding
the observation of planetary magnetic fields (Chapter 5); for instance, the magnetic
field of Io is believed to be produced by magnetoconvection in the core of Io in the
presence of the jovian external magnetic field (Sarson et al., 1997). In practice, dur-
ing an experiment, one assumes dynamo action based on the observation that there
is a large self-induced magnetic field compared to the ambient field that persists for
a long time, compared to the magnetic diffusion time. Moreover, there is generally
a very clear transition between the induction and the self-induction of a magnetic
field as the experimental parameters are varied.

To date there have been many experiments that have been conducted with the objec-
tive of describing astrophysical and geophysical objects. However, we will restrict
this review to those experiments directly devoted to the understanding of dynamo
action. Other experiments have been carried out to understand the basic dynamics
on which a dynamo can start. These cover aspects such as thermal convection in a
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Table VI - Liquid sodium properties at 393 K (120 ◦C).

Density ρ 932 × 103 kg m−3

Dynamic viscosity μ 6.2 × 10−4 kg m−1 s−1

Kinematic viscosity ν ≡ μ/ρ 6.77 × 10−7 m2 s−1

Fusion temperature Tf 97.8 ◦C
Thermal expansion coefficient α 7.1 × 10−5 K−1

(at 298 K)
Thermal conductivity k 85.9 W K−1 m−1

Specific heat cP 1373 J kg−1 K−1

Thermal diffusivity κ ≡ k/(ρ cP ) 6.71 × 10−5 m2 s−1

Electrical conductivity σ 9.35× 106 Ω−1 m−1

Magnetic diffusivity η ≡ (μ0 σ)−1 8.53 × 10−2 m2 s−1

Prandtl number Pr ≡ ν/κ 10−2

Magnetic Prandtl number Pm ≡ ν/η 7.9 × 10−6

rotating sphere, precession, boundary effects or instabilities, magnetohydrodynam-
ics turbulence. They are reported in a review by Nataf (2003).

This chapter will be divided in two parts. The first part describes a set of experiments
using the same definition for all dimensionless numbers in order to allow an easier
comparison between these. It ends with a discussion on sodium technology and
measurements. The experimental results are discussed in terms of dynamo mecha-
nisms in the second part. Future challenges of experimental dynamo modelling are
exposed in the conclusion.

8.2. DESCRIPTION OF THE EXPERIMENTS

A survey of magnetohydrodynamics experiments devoted to study high magnetic
Reynolds numbers flows is presented here in a chronological order. Although nu-
merous experiments greatly improved our knowledge on dynamo mechanisms, it is
only in 1999, that great advances were achieved. It was then that the dynamo effect
was first measured in a flow of liquid sodium, quasi-simultaneously in Riga (Gailitis
et al., 2000) and Karlsruhe (Müller & Stieglitz, 2000). In addition to these two suc-
cessful dynamo experiments, a number of high magnetic Reynolds experiments of
a second generation have recently been performed in order to investigate magnetic
field amplification in less constrained flows than in Riga or Karlsruhe. Some new
projects of sodium experiments are presented at the end of this survey. In the follow-
ing sections, every experiment is described and presented in a schematic diagram,
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completed by a table giving its main characteristics and relevant dimensionless num-
bers.

Specific conditions associated with the use of sodium in dynamo experiments are
listed at the end of this section. Progress and limitations of measurement techniques
in dynamo experiments are eventually discussed.

8.2.1. A RAPIDLY ROTATING DISC IN A CYLINDER OF SODIUM

B. Lehnert can be considered as a pioneer of magnetohydodynamics experiments
with liquid metals such as mercury (Lehnert, 1951; Lehnert & Little, 1956) and
sodium (Lehnert, 1958). His most relevant experiment for dynamo mechanisms is
the latter one, performed in liquid sodium.
He constructed a cylindrical vessel filled with
sodium, a rotating copper disc driving the flow
inside. Lehnert successfully verified the so-
called ω–effect by measuring the conversion of
an imposed poloidal magnetic field B0 (gener-
ated by a coil below the vessel) into a toroidal
one by an axisymmetric flow of liquid sodium.

� N =
σB2

0 R

ρ (ωdiscRdisc)
≈ 0 − 1.

� Rm = μ0σ(ωdiscRdisc)R ≤ 10.

� Prediction: induced field of the
same order as the imposed mag-
netic field with the same apparatus
if → ωdisc ≈ 3000 rpm .

� Power of the rotating
motor, Pmotor ≤ 3 kW .
� ωdisc ≤ 500 rpm
(rounds per minute).
� B0 ≤ 0.03 T at the
height of the disc.

Measurements:
� Power input for a
constant rotation rate of
the motor.
� Induced magnetic field
measured by a probe coil
in the bulk of the fluid.

�disk

H ~ 0.45m

58 litres
sodium

copper disk
with radial strips

B0
poloidal

R = 0.2m

radial strips
Rdisk = 0.09m

8.2.2. A DYNAMO WITH TWO SOLID ROTATING CYLINDERS

Lowes & Wilkinson (1963, 1968) were the first to achieve a solid dynamo experi-
ment in the laboratory following an idea of Herzenberg (1958). Two ferromagnetic
cylinders of iron alloy with their axes at right angle were rotated independently in
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a housing of the same material (Lowes & Wilkinson, 1963). Electric contacts be-
tween the housing and the rotating cylinders were done with liquid mercury. With
adequate directions of rotation and sufficiently high angular velocities for the cylin-
ders, the ambient magnetic field was amplified and eventually, at the critical Rm,
the magnetic field of the system (cylinder 1 and cylinder 2) became self-sustained
provided the cylinders were kept rotating at the same velocities. The dynamo mech-
anism was the following: the induced toroidal magnetic field (via the ω–effect) of

�2

R = 0.035m

�1

cylinder 1 provides the external poloidal
magnetic field of cylinder 2, the induced
toroidal magnetic field (via the ω–effect
again) of cylinder 2 providing in turn the ex-
ternal poloidal magnetic field of cylinder 1.
Note that, with a slightly modified experi-
mental set-up, but still with ferromagnetic
materials, Lowes & Wilkinson (1968) could
witness reversals of the self-sustained mag-
netic field in their system.

Measurements:

� Induced magnetic field.

� Differences in electric
potential between cylinders.

� Binduced ≤ 0.1T .

� Rm = μ∗
ironσωR2 ≤ 200.

� Pmotor ≈ 2 × 100 W .

� ω1 ≈ ω2 ≤ 2000 − 3000 rpm .

� B0 = ambiant magnetic field.

� μiron alloy ≈ 150μ0.

� Depth between the two axes of
the cylinder = 0.08 m in the 1963
experiment.

8.2.3. THE α–BOX EXPERIMENT

� Re =
UL

ν
≈ 5 × 105.

� N =
σB2

0L

ρU
≈0 − 30.

� Rm = μ0 σ U L ≤ 2.

A joint Postdam-Riga experiment was constructed to
measure the so called α–effect in a small container:
liquid sodium was run through a system of orthogo-
nally wounded channels of stainless steels (Steenbeck
et al., 1968). The set-up was designed to drive the
sodium through an helicoidal flow under an imposed

magnetic field. Differences in electric potential between the bottom and the top of
the container were measured with a pair of electrodes in the direction of the applied
magnetic field.
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Figure 8.1 - The experiment of Lowes & Wilkinson at the University of Newcastle,
England, in 1963 (photographs courtesy of F. Lowes).
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B0

0.152m

0.515m

sodium

sodium

copper electrode

L = 0.015m

� Number of horizontal
channels along the total
height = 28 .

� Sodium velocity,
Umax = 11 m s−1 .

� B0 ≤ 0.3 T .

Measurements:

� Differences in electric po-
tential between the top and
bottom with electrodes.

8.2.4. A PRECESSING EXPERIMENT IN LIQUID SODIUM

Gans (1970) initiated magnetohydrodynamic experiments in the presence of a global
rotation of the system (and therefore in presence of the Coriolis force). He built a
precessing experiment in liquid sodium following the work of Malkus (1968) in
water. A cylinder filled with liquid sodium rotated in an axisymmetric imposed
magnetic field along its rotation axis. The whole set-up was spun-up simultaneously
on a rotating table, at right angle to the rotation axis of the cylinder. The experiment

� ωcyl ≤ 3600 rpm .

� Ωtab ≤ 50 rpm .

� B0 = 0.023, 0.046 T
by a d.c. coil.

was built with the theoretical idea that the precession of
the Earth’s core may be one of the main source of energy
of the dynamo (Malkus, 1994; Kerswell, 1996; Noir et al.,
2003). Unfortunately, due to technical difficulties, Gans
(1970) could not cover the full expected parameter regime
with this experiment.

B0

variable H ~ 2R

~ 12 litres
sodium

R = 0.125m
�cylinder

�table

Measurements:
� Torque imposed by the rotation
of the cylinder induced magnetic
field.

� E =
ν

ΩtabR2
≈ 10−7.

� N
σB2

0R

ρ(ωcylR)
≈ 10−2.

� Rm = μ0 σ ωcyl R2 ≤ 70.
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8.2.5. THE FIRST PONOMARENKO TYPE EXPERIMENT

Following a theoretical prediction of
dynamo action in an endless helical
stream of screw type (Ponomarenko,
1973; see also Chapter 1, Section 1.6.1)
for a relatively low critical magnetic
Reynolds, an experimental set up was
assembled in Riga and run in Leningrad
in 1986 (Gailitis et al., 1987). More
than 150 litres of sodium was powered
by electromagnetic pumps and circu-
lated through a cylinder with an heli-
coidal diverter at the top. The external
field was imposed by a 3–phase gen-
erator as theoretically required by the
Ponomarenko dynamo. Although the
experiment was run successfully, it had
to be stopped probably close to the dy-
namo onset (see Section 8.3.5 and Fig-
ure 8.11) due to mechanical vibrations
in the central thin wall of stainless steel
in the center of the device.

2R = 0.14m

0.27m

0.50m

3m

sodium flow

sodium at rest

B0 producer by
exciting windings

measuring chanel
(diameter 0.028m)

� Texperiment ≈ 200 ◦C .

� Flow Sodium rates
Qsodium = 280 − 660 m3 h−1 .

Measurements:

� Sodium flow rate (electromagnetic
flow meter).

� Induced magnetic field inside the
channel.

� Umax =
Qmax

πR2
≈12 m s−1.

� Rm = μ0 σ U R ≤ 8.
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8.2.6. THE VORTICES OF GALLIUM

In the mid-ninety’s two experiments were run using liquid gallium. Gallium has a
low point of fusion (30 ◦C), is a fairly high conductor of electricity (3 times larger
than mercury, but 3 times smaller than sodium), and is easier and safer to handle in
a laboratory compared to sodium or mercury.
Motivated by the description of a geophysicaly relevant regime, in which the Lorentz
and Coriolis forces are comparable, Brito et al. (1995, 1996) run an isolated vortex

B0

~ 1 liter
gallium

R = 0.04m

H = 0.22m

�disk

�disk

crenelated disk

Rdisk = 0.02m

generated by a rotating disc at the bottom,
the vortex being also rotated on a table
(to include the effect of the Coriolis force
on the flow). A transverse magnetic field
was imposed perpendicular to the axis
of rotation. A set of measurements was
performed: gallium velocity inside the
vortex, differences in electric potential at
the vortex boundary, induced magnetic
field outside the vortex and gallium
temperature. These measurements ac-
companied by a numerical model of the
electric current circulation in the bulk
of the vortex allowed to quantitatively
describe the dynamics of that geostrophic
vortex under the presence of a transverse
applied field. Brito et al. (1996) derive
a quantitative scaling law of the Joule
dissipation as a function of the forcing
and the imposed magnetic field.

� Pmotor = 1.3 kW .
� ωdisc ≤ 3000 rpm .
� Ωtable ≤ 90 rpm .
� B0 ≤ 0.075 T .

Measurements:
� Gallium velocity field (Venturi tubes
at the top).
� Induced magnetic field (Hall probe).
� Differences in electric potential
(copper electrodes).
� Gallium temperature (thermistor).
� Torque applied by the rotating motor.

� Ro =
(ωdiscRdisc)

Ωtable R
≈ 0.7 − 15.

� N =
σB2

0 R

ρ (ωdiscRdisc)
≈ 0 − 1.

� E =
ν

ΩtableR2
≈ 10−4 − 10−6.

� Λ =
σB2

0

ρΩtable
≈ 10−3 − 1.5.

� Rm = μ0σ(ωdiscRdisc)R ≤ 0.1.
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Odier et al. (1998, 2000) generated the so-called Von Kármán flow in gallium in a
cylinder with two corotating discs in presence of an imposed magnetic field parallel
or orthogonal to the vertical axis of the cylinder. Measurements of the magnetic field
inside the cylinder allowed to describe precisely the advection and expulsion of the
imposed magnetic field.

rugosed disk

�1

�2

~ 5.5 litres
gallium

H = 0.1m

B0

R = 0.1m

Rdisk = 0.09m

� Pmotor = 2 × 11 kW .

� ωdisc ≤ 3000 rpm .

� B0 ≤ 0.002 T .

Measurements:

� Induced magnetic field at
various depth in the equator
plane (Hall probes).

� Dynamic pressure at the
cylinder boundary (piezoelec-
tric transducer).

� N =
σB2

0 R

ρ (ωdiscRdisc)
≈ 0 − 10−4.

� Re =
(ωdiscRdisc)R

ν
≤ 108.

� Rm = μ0σωdiscRdiscR ≤ 3.
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8.2.7. THE RIGA DYNAMO

After the promising results of the Leningrad experiment (see Section 8.2.5), the lat-
vian team built a new experiment: the shape and sizes of the central channel were
changed, an important effort was done to optimize the velocity profiles both with ex-
periments in water and numerical modelling (Stefani et al., 1999; see Section 8.3.5).
The shape of the propeller was also optimised and eventually, the main change was
the replacement of the electromagnetic pumps by two powerful motors driving the
propeller at the top of the device (Gailitis et al., 2002b).

The first experimental evidence of dynamo action was obtained in Riga at the end
of 1999 (Gailitis et al., 2000): an imposed field as close as possible to the expected
one – from theoretical studied of the Ponomarenko dynamo – was amplified during
an experiment, as measured by flux gate-sensors along the vertical of the device.
The magnetic fields spatial distribution and frequency were studied as a function
of the rotation rate of the propeller above the critical magnetic Reynolds number.
Saturation of the self-sustained magnetic field was observed (Gailitis et al., 2001).

2R = 0.25m

0.43m

0.80m

propeller

H = 3m

�

sodium at rest

� Pmotor ≤ 120 kW .

� ω ≤ 2200 rpm .

� B0 is an helicoidal field along the
vertical axis of the device.

Measurements:

� Induced magnetic field with flux gates
and Hall sensor at different heights
along the vertical.

� Motor power delivered as a function
of rotation rate.

� Monitoring of the sodium
temperature.

� Rm = μ0σωR2 ≤ 42.
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Figure 8.2 - The Riga dynamo experiment (photograph courtesy F. Stefani).
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8.2.8. THE KARLSRUHE DYNAMO

Self-excitation was also observed in the Karlsruhe device, which was based on
a theoretical two-scale periodic kinematic dynamo of G.O. Roberts (1972), see
Section 1.5. It was designed jointly by Busse (Bayreuth) and Müller (Karlsruhe)
(Busse et al., 1996). A set of 52 spin-generators were assembled in a large con-
tainer, a pair of spin-generators being distinctively shown in the figure (Müller &
Stieglitz, 2000). Each generator contains a central tube in which the sodium is
flowing unidirectionally with a flow rate VC and an outer part in which the sodium
flows with an helicoidal forced motion and a flow rate VH . The sodium is go-
ing up and down in his neighbouring generator. The gap between the 52 heli-
coidal cylinders is filled with liquid sodium at rest. Three electromagnetic pumps
forced the sodium to flow in and out of the container, one pump running the sodium
through the central tubes, and the two other ones through the helicoidal outer part.

H = 0.703m

2R = 1.7m

sodium flow

+ –
–

2a = 0.21m

Sodium flow rates were mon-
itored. Beyond the critical
rate for both flows (in the
central and the outer parts),
magnetic measurements
showed that the ambient
magnetic field was rapidly
amplified and saturated after
a transient time (Stieglitz &
Müller, 2001; Müller et al.,
2004).

� Flow sodium rates Qsodium = 70 − 120 m3 h−1 .

� Pthreepumps ≤ 500 kW .

� B0 ambient magnetic field.

Measurements:
� Induced magnetic field (three components) at various
locations inside and outside the container (Hall probes).
� Induced magnetic field with compass needles outside
the container.
� Flow rates of sodium.
� Sodium temperature.

� Umax = Qsodiummax/(πa2) ≈ 1 m s−1

� Rm = μ0σUmaxR
2 ≤ 10
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Figure 8.3 - The Karlsruhe dynamo experiment (photographs courtesy U. Müller,
R. Stieglitz).
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8.2.9. THE COLLEGE PARK EXPERIMENTS

The Lathrop group have been running sodium experiments for a few years in Col-
lege Park, Maryland. They have performed convective experiments (Peffley et al.,
2000a; Shew et al., 2002), as well as mechanically forced magnetohydrodynamics
flow (Peffley et al., 2000b; Sisan et al., 2003). This mechanically forced spheri-
cal experiment is motivated by kinematic dynamo calculations of Dudley & James
(1989) which predict a critical magnetic Reynolds number possibly reachable in a
laboratory with the following type of flow used by Lathrop and his collaborators. In
this device, two mixing propellers drive the flow in a sphere filled with sodium (co or
counter rotating propellers). Baffles attached to the outer boundary are added to the
rotating sphere in order to increase the vigour of the mixing. An imposed magnetic
field is either parallel (dashed lines) or orthogonal (solid lines) to the rotating shaft.
This team has been using a pulse decay measurements of an externally applied field
to quantify how far an experiment was from the dynamo onset (see Section 8.3.5).
In an attempt to get closer to the dynamo transition, they have tried number of var-
ious set-ups and have, for example, changed the shape of the propeller, as well as
changed the boundary conditions with equatorial copper discs at the equator of the
sphere (Shew et al., 2001).

B0

propeller
baffle

~ 15 litres
sodium R = 0.1524m

Rp = 0.0635m

�1

�2

� Pmotor ≤ 15 kW .

� ω1 ≈ ω2 ≤ 3000 rpm .

� B0 ≤ 0.2 T .

Measurements:
� Induced magnetic field after imposed pulses, mea-
sured by Hall probes.
� Mechanical power as a function of rotation rate.
� Monitoring of the sodium temperature.

� N =
σB2

0 R

ρωRp
≈ 0 − 17.

� Rm = μ0σωRpR ≤ 30.
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8.2.10. VON KÁRMÁN SODIUM EXPERIMENTS

The Von Kármán Sodium or VKS experiments performed in Cadarache (France)
follows from the Von Kármán Gallium (see Section 8.2.6) experiments, at higher
magnetic Reynolds number (Bourgoin et al., 2002; Marié et al., 2002). Again,
the VKS flow is of the same type as that of Dudley & James (1989) with possibly
a relatively low critical magnetic Reynolds number. The VKS team has placed a
considerable amount of energy in tuning this experiments, both experimentally (with
water and with gallium with similar set-ups) and numerically [by using kinematic
dynamo calculations based on velocity flows measured in water (Bourgoin et al.,
2002; Marié et al., 2002; Marié et al., 2003), see Section 8.3.5]. In particular, they
examined the optimised ratio of poloidal versus toroidal velocity for the dynamo
action. So far, they have observed an amplification of the imposed magnetic field but
not reached a self-sustained dynamo (Bourgoin et al., 2002; Pétrélis et al., 2003).13

� Pmotor = 2 × 75 kW .

� ωdisc ≤ 1500 rpm .

� B0 ≤ 0.002 T.

Measurements:

� Induced magnetic field inside the
flow using a 3D Hall probe.

� Dynamic pressure at the wall.

� LDV velocity measurements in
water experiments.

� Rm = μ0σωdiscRdiscR ≤ 50

B0

H = 2R

~ 70 litres
sodium

�1

�2

R = 0.2m

Rdisk = 0.15m

13 Editorial comment: see recent developments in the concluding chapter of the book.
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8.2.11. DERVICHE TOURNEUR SODIUM PROJECT

The Geodynamo team (Grenoble, France) has constructed an experiment devoted to
study the magnetostrophic regime in a sphere (an experiment called DTS or “Der-
viche Tourneur Sodium”). This regime implies that the Lorentz and Coriolis forces
are dominant on the flow. An inner and an outer sphere are allowed to rotate in-
dependently, and the magnetised inner sphere carries a permanent dipolar magnetic
field (Cardin et al., 2002). The particularity of this project lies in the crucial roles of
Coriolis or rotational forces, that are assumed to be very important in the generation
of most planetary magnetic fields (Chapters 4 & 5).

Experiments in water with a similar geometry of the experimental set-up are per-
formed and compared to direct numerical simulation (Schaeffer & Cardin, 2005);
available results indicate that such a spherical-Couette flow might be favourable for
dynamo action. Dynamo action is not expected in the present experimental set-up,
as the DTS experiment is fairly small in size.

B0

�outer sphere

�inner sphere

~ 45 litres
sodium

Ri = 0,07m 0,07m

R = 0,21m 0,21mR = 0,21m

Ri = 0,07m

� Pmotor = 2 × 11 kW .
� Ωin = Ωout ≤ ±3000 rpm .
� B0 =≤ 0.022 T at mid-depth of
the shell.
Measurements:
� Ultrasonic Doppler velocimetry
for the sodium flow.
� Induced magnetic field outside
the shell.
� Differences in electric potential
at the outer sphere boundary.

� E =
ν

ΩoutR2
≈ 10−8.

� Λ =
σB2

0

ρΩout
≤ 0.2.

� Rm = μσ[Ωi − Ωo

(R − Ri/2)]R ≤ 20.
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8.2.12. THE MADISON PROJECT

Forest and his collaborators in Madison, Wisconsin, have been preparing an experi-
mental dynamo that is also based on a Dudley & James type flow in a sphere (Forest
et al., 2002). The experiment is close to the
geometry of the experiment of Lathrop’s group
but larger in size. This group has placed a sig-
nificant effort in the hydrodynamic experimen-
tal modelling of the flow, in particular they have
worked to select the most appropriate propeller
to drive a flow as close as possible to the Dud-
ley & James one. Velocity flows measured in wa-
ter experiments were used in a kinematic dynamo
model. This indicated that the present size of the
experiment and the power of the motors should al-
low to obtain an homogeneous dynamo in sodium.

Measurements:
� Laser Doppler velocimetery in
the analogous experiment in
water.
� Poloidal induced magnetic field
with an array of 64 Hall probes at
the surface of the sphere.
� Toroidal induced magnetic field
with external toroidal coils?

� N =
σB2

0R

ρU
≈ 0 − 1.

� Rm = μ0σUmaxR ≤ 120.

� Pmotor ≤ 2 × 75 kW .
� Umax ,predicted =
20 m s−1 .
� B0 ≤ 0.012 T via two
coils.
� 60 kW of resistive
heating elements.
� 35 kW of oil based heat-
ing/cooling.

B0

propeller

~ 50 litres
sodium R = 0.5m

�1

�2

8.2.13. THE PERM PROJECT

A new kind of experimental dynamo project is under study in Perm, Russia. This
project also relies on the Ponomarenko dynamo, more precisely on dynamo action
caused by a strongly time-dependent helical flow. The idea is to used a toroidal
channel filled with liquid sodium (≈ 100 litres) with an helicoidal diverter inside
(Frick et al., 2002). The torus would be accelerated to a very high velocity of rota-
tion of order 3000 rounds per minute ( rpm) and then stopped abruptly. The dynamo
effect should then be observed during the spin-down time of the torus. Experiments
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in water and kinematic calculations are promising for the dynamo experiment (Frick
et al., 2002; Dobler et al., 2003): the dynamo in such a torus requires a short time of
braking of less than 0.2 second. A thin and very high conductive shell is required for
the torus (copper) and an appropriate seed magnetic field could be assembled with
an arrangement of permanent magnets around the torus.

8.2.14. THE SOCORRO PROJECT

A dynamo experiment is under development in Socorro, New-Mexico, around the
group led by S. Colgate. The objective being to create an αω–type dynamo exper-
iment. The experiment uses a Taylor Couette flow between two cylinders rotating
at different angular velocities to model the ω–effect (Colgate et al., 2002). The
α–effect is produced by the rising of two jets of liquid sodium at the base of the
experiment. Experiments in water and kinematic dynamo calculations are currently
performed and indicate that self-excitation of a magnetic field might be reachable in
such an experimental device.

8.2.15. A NEW PRECESSING PROJECT IN SODIUM

Following the experiments of Gans (1970), the Léorat group is at present studying a
cylindrical precessing experiment type flow, in Meudon, France. A preliminary ex-
periment in water, as well as numerical kinematic calculations (Léorat et al., 2001),
placed constraints on the dynamics of the precessing flow in a cylinder at a high hy-
drodynamical Reynolds number as well as on the power dissipated by such a flow.
The water project is completed, a sodium experiment with a large precessing cylin-
der, of metric size, is anticipated.

8.2.16. TECHNOLOGY AND MEASUREMENTS
IN DYNAMO EXPERIMENTS

LIQUID SODIUM AND ITS PROPERTIES

As seen throughout the survey of experiments, liquid sodium is now broadly used
in high magnetic Reynolds experiments and appears to be the preferred fluid for
dynamo modelling in the laboratory. Its main physical properties are shown in Ta-
ble VI. As mentioned in the introduction, its electrical conductivity is very large
[see Nataf (2003) for comparison of physical properties of gallium and mercury],
but its low density and melting point also make it very attractive to use in the
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laboratory. The large production of sodium (23000 tons yr−1 in France for exam-
ple) makes it quite inexpensive (10 euros/kg for sodium) compared to other met-
als (1000 euros/kg for gallium, for example). The main difficulty with sodium is
its strong reactivity with water, air and plenty of other materials such as alcohol,
concrete, etc. For example, sodium reduces water with production of hydrogen,
which may spontaneously explodes in air. At high temperature (≥ 250 ◦C), droplets
of sodium may even burn in air with small flames generating solid oxydes at the
surface of liquid sodium or aerosol in the surrounding atmosphere. This explains
why dynamo experiments are usually conducted in installations dedicated to nu-
clear technology, with a solid experience in sodium handling (Forschungszentrum
Karlsruhe GmbH, Karlsruhe experiment; Institute of Physics, Salaspils, Riga exper-
iment; Comissariat à l’énergie atomique, Cadarache, VKS experiment) or in par-
ticular buildings (free of water) specially devoted to such experiments (such as in
Grenoble).

EXTRACTION OF POWER AND SEALING

As discussed in the introduction, a large amount of power must be introduced in
dynamo experimental set-ups. This power is ultimately converted into heat through
viscous or magnetic dissipation. If this heat is not extracted, the sodium tempera-
ture quicly rises, decreasing the value of Rm (as the electrical resistance of sodium
increases with temperature). Typical experiments are conducted during a limited
period of time, of the order of a minute, like in Riga or Cadarache. The experiment
is then kept at rest during a few minutes or hours until the sodium cools down, gen-
erally to around 120 ◦C . In Karlsruhe, the circulation of sodium through powerful
heat exchangers allowed to perform the experiment during a few hours without stop-
ping; this kind of sodium circulation through exchangers is also under development
in a new experimental set-up of VKS. In Grenoble, in a smaller device in which
20 kW only are injected, a strong flow of cool/hot air circulation around the rotating
sphere is planned to monitor the temperature of the experiment. Another possibility
is to use an oil circulation in order to extract heat around the container. This is, for
example, used in the Madison experiment.

Leakage of sodium in a dynamo experiment involving a vigorous flow may be very
damaging. However, dynamic sealings in sodium are not entirely satisfactory, they
are still under development; instead for example, in the VKS experiment small leak-
age of sodium is permitted, in College Park the joint around the rotating shaft is
replaced after every experimental run. As another example, the first dynamo run
in Riga (November 1999) also had to be stopped because of a sodium leakage at
the top of the container. Experiments in which no specific sealings are needed such
as the Karlsruhe dynamo or the precession experiments (Gans, 1970; Léorat et al.,
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2001) are in that respect very appealing. An electromagnetic coupling has been suc-
cessfully tested in Grenoble, in order to rotate the inner sphere. This solution, which
also avoids sealing in sodium, might offer a promising alternative.

MEASUREMENTS

Quantitative measurements in classical fluid dynamic experiments are usually dif-
ficult. They become very challenging in magnetohydodynamics experiments using
sodium, in particular because electromagnetic waves cannot be used. The tempera-
ture of sodium – between 120 ◦C and 200 ◦C – places severe constraints and prevents
the use of classical measurement technics. In the following, we present the sort of
measurements performed nowadays in dynamo experiments. Most of them need a
very efficient electronic system to process measured signals, protection from elec-
tromagnetic noise, digitalisation for computer analysis. Even if the quality of the
measuring probes is important, data processing remains crucial.

Induced magnetic field: The key measurement in a magnetohydrodynamic exper-
iment remains the magnetic field! It is systematically measured in all experiments.
These measurements are usually done outside the flow. Local measurements in the
flow may perturb the flow, and in addition magnetometer probes operate at low tem-
perature and generally need a controlled temperature to work properly. The probes
are usually of two types: the Hall effect probes (|B| greater than a few microtes-
las) measure stationary and time varying magnetic field (the bandwidth is generally
controlled by the electronics). The principle of the second type of probes is based
on the measurement of an induced electric current produced by a time varying mag-
netic field in a coil (sensitivity and precision are directly connected to the coil and
the electronics). Both measurements are unidirectional. These probes are generally
small (less than a few millimetres). Given that a probe provides a local measurement
of one component of the magnetic field, it is very difficult to build a good spatial de-
scription of the magnetic field; an array of probes is necessary in order to have a
spatial description (e.g. Forest et al., 2002 for example). Large coils (of the size of
the experiment) are sometimes used to impose a magnetic field on the flow. The
same coils may be used to measure the oscillating or decaying induced field.

Dynamic Pressure measurements: Dynamic pressures can be measured by piezo-
electric probes in contact with the fluid. Their typical sizes are a few millimetres in
diameter. They can be very sensitive up to 1 Pa. This technique measures time
variations of the pressure (from a few Hz to a few tenths of kHz); they are used
as indirect measurement of time variations of the velocity field. Pressure temporal
spectra are then used to characterise turbulence in the flow.
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Electric potentials: Electric potentials may be measured with copper electrodes
in contact with the liquid sodium. The sensitivity and bandwidth of these measure-
ments are given by the ones of the measuring voltmeter. These potentials are dif-
ficult to interpret because they are related to electric currents which may have two
sources, electric or electromotive fields (Steenbeck et al., 1968; see Section 8.2.3).
The temporal evolution of the measured currents with the electrodes at the edge of
the container may also be directly related to the dynamic of the flow (Brito et al.,
1995).

Fluid velocity measurements: The velocity field, while being a key measurement
in magnetohydrodynamic experiments, is only very rarely measured. This is mainly
because sodium is opaque. Experimentalists usually use an indirect volumic mea-
surement of the velocity field via the control of the torque (or power) delivered by
rotating motors (Gailitis et al., 2001, see Figure 8.15). Control of sodium flow rates
through pumps also permits an averaged measurement of the velocity field, as in
Karlsruhe for example (Stieglitz & Müller, 2001; e.g. Figure 8.16).

The intrusive hot film probes technique gives very good result in term of local vari-
ations of the velocity field. They are based on the measurement of the electrical
resistance of a conducting wire, which varies with its averaged temperature that is
controlled by the flow around the wire. As far as we know, this technique has not
been used in a dynamo experiment, whereas it is largely used in MHD turbulence
experiments (e.g. Alémany et al., 1979).

A promising non-intrusive technique to measure velocity fields in fluid dynamics
experiment is the Doppler Ultrasound Velocimetry: it is based on the ultrasonic
back scattering of oxydes (or other particles) in suspension in liquid sodium (for
example). This technique which is successful in water, and gallium, should work
as well in sodium (Brito et al., 2001; Eckert & Gerbeth, 2002). Laser Doppler
velocimetry is also broadly used in water experiments (Forest et al., 2002; Marié et
al., 2003): water models of sodium experiments enable velocity field measurements
below the onset of dynamo (see Section 8.3.5).

Temperature: Temperature measurements (usually performed at the boundaries)
are easily achieved. They are generally based on measurements of the electrical
resistance of a material which varies with temperature. They may indicate the dissi-
pation rate (or Joule dissipation) in the MHD flow (Brito et al., 1996). Temperature
probes can also be used to track motions of thermal dynamic structures acting as
passive tracers in front of temperature probes.
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8.3. WHAT HAVE WE LEARNT
FROM THE EXPERIMENTAL APPROACH?

In the second part of this chapter, we discuss the results of the various experiments
described in the first part. Each subsection is devoted to a particular aspect or related
aspects of the dynamo mechanisms. We will discuss to what extent experiments
validate, or not, dynamo theory.

8.3.1. THE ω–EFFECT

A vortex of liquid metal permeated by an external magnetic field induces an az-
imuthal (toroidal) magnetic field parallel to the flow. This geometrical conversion
of magnetic field lines is known as the ω–effect (see Chapter 1). Lehnert (1958,
see Section 8.2.1) measured an induced azimuthal field up to 25% of the value of
the imposed axial poloidal magnetic field. He produced a meridional map of the
average induced field (Figure 8.4) with some singularities at the side boundary (re-
versed field), which maybe due to singularities in the fluid flow. The same effect was
measured by Brito et al. (1995) in a geostrophic vortex of liquid gallium (see Sec-
tion 8.2.6) and quantitatively understood with loops of electric currents and electric
potentials within the flow: the transverse imposed magnetic field produced electric
Foucault currents parallel to the axis of the vortex, which in turn induced a magnetic
field diffusing outside the tank, where it was measured (Figure 8.5). The induced
electric currents were produced by shear layers as shown both by the measurements
and by a numerical model (Brito et al., 1995). Note that a solid body rotation would
only produce an ω–effect in its edge, within the hydrodynamic shear boundary layer.
This effect should really be referred to as the “ω–gradient–effect” to emphasise the
importance of the differential rotation. These effects are clearly linear in Rm (Fig-
ure 8.5). More recently, the VKS experiments (8.2.10) also verified this mechanism
in gallium and sodium for larger Rm (Odier et al., 1998; Bourgoin et al., 2002;
Marié et al., 2002; Figure 8.8).

The Lowes & Wilkinson (1963) solid dynamo experiments (Section 8.2.2) also re-
lies upon the ω–effect. Each solid cylinder transforms an axial component of the
magnetic field into an azimuthal one; the position of both cylinders is chosen so that
the azimuthal component of the magnetic field associated with a cylinder is axial to
the other one. Electric currents are produced at the edge of the rotating cylinders in
a thin layer of mercury which connects the main solid piece to the solid cylinder and
return in the solid parts creating an induced azimuthal field.
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Figure 8.4 - Meridional map of the induced magnetic field demonstrating the ω–
effect in the Lehnert’s experiment (see Section 8.2.1). An imposed poloidal mag-
netic field B (dashed lines) is twisted, by the toroidal velocity flow vt, into a toroidal
magnetic field bt (shown on the left, the size of the symbols being proportional to
|bt|/|B|). i stands for electric currents. The resulting poloidal magnetic field lines
B + bp (solid lines) seem to be expulsed (from Lehnert, 1958).

8.3.2. MAGNETIC FIELD EXPULSION

When the magnetic Reynolds number is high, the magnetic field can be expelled
from very active dynamical regions by the so-called “magnetic field expulsion”
(Gubbins & Roberts, 1987). This process may be understood as a skin effect: in
the reference frame of the moving fluid (for example, a rotating frame at frequency
ω associated to a vortex of radius R), we consider a magnetic field which oscillates
in time. The magnetic field penetrates the metal in a skin of size

√
η/ω = R/

√
Rm.

Electric currents are consequently produced in the skin layer, which in turn produce
an induced magnetic field, opposite in direction to the applied magnetic field in the
heart of the vortex. The resulting magnetic field is then expulsed from the heart of
the vortex. Lehnert (1958) (see Section 8.2.1) observed this effect in the poloidal
part of the magnetic field as seen in Figure 8.4, in presence of the motion of the
liquid sodium for Rm >∼ 5). The magnetic field lines were deflected outside the
sodium tank. Another evidence of this phenomena has been observed in the VKS
experiment (see Section 8.2.10): at Rm above 30, a departure from linearity associ-
ated to the ω–effect (Figure 8.6) is observed. The induced magnetic field increases
less rapidly than predicted. In these cases, it is nevertheless difficult to differentiate
the precise effect of the magnetic field expulsion from a dynamic change of the flow
at large values of Rm. This second explanation, however, appears unlikely as the
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Figure 8.5 - Induced magnetic field Binduced by a vortex of gallium in an imposed
magnetic field Bimposed (see Section 8.2.6). The ω–effect is a linear function of Rm
(from Brito et al., 1995).

interaction parameter N is rather small in both experiments. Note that the effect of
a rotating magnetic field on a liquid metal flow also has been studied for its appli-
cation in metallurgy (mixing techniques), these studies being generally focused on
large interaction parameters (see Witkowski et al., 1998, for example).

8.3.3. THE α–EFFECT

When there is production of an electric current parallel to an imposed magnetic
field that process is called, in very general terms, the α–effect. Historically, this
effect was introduced to model the effect of small scales on large scales in the two–
scale concept introduced in Section 1.5, but this effect is often used in a generalised
sense. It is then usually referred to as the “Parker effect” for general flows (when
two scales are not easy to define). The expression “macroscopic α–effect is also
sometimes used.

As soon as the α–effect was theoretically derived (Steenbeck et al., 1966), the same
team built the α–box (see Section 8.2.3) in order to prove its existence in the lab-
oratory. Figure 8.7 from Steenbeck et al. (1968) shows that measurements of dif-
ferences in electric potentials between the top and the bottom of the box are linear
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Figure 8.6 - Induced magnetic field bind measured in the VKS experiment (see Sec-
tion 8.2.10) versus the magnetic Reynolds number Rm. An axial magnetic field (in
the direction of the rotation axis of the discs) of 5.4 × 10−4 T is imposed. The lin-
earity of the transverse (and azimuthal) component demonstrates the ω–effect and
the departure from linearity may be associated to the expulsion of the magnetic field
(from Marié et al., 2002).

with the squared velocity and with the magnetic field as expected. However, it is
not straightforward to interpret these electric potential measurements is terms of
electric currents. If a wire had been connected between the two electrodes, assum-
ing these electric potentials were due to an average induced electric current aligned
with the applied magnetic field in the volume of the α–box, a back of the envelope
calculation shows that a current of a few thousand amperes would have circulated
between these (inducing a measurable magnetic field). Unfortunately, this type of
measurements could not have been performed at that time and it is therefore possible
that more complicated geometries of the currents inside the box (especially in the
presence of stainless steel boundaries) were responsible for the measured electric
potentials. Nevertheless, the clear dependence in |u|2 is a clear indication of a sec-
ond order effect in Rm, and thus an α–effect. Open questions however remain after
that experiment: what would have been the measurements had there been one cell
instead of 28 (question regarding scale separation), what was the role of helicity in
the α–effect (as the flow in the pipes does not have much hydrodynamic helicity)?
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Figure 8.7 - (a) Differences in electric potential measured in the α box (see Sec-
tion 8.2.3) as function of the squared velocity ( m2 s−2) for different value of the
imposed magnetic field (in T). (b) Differences in electric potential measured in the
α box as function of the imposed magnetic field for different value of the velocity (in
m s−1). The two linear dependances in |B0| and |u|2 are the experimental evidences
for the α–effect (from Steenbeck et al., 1968).

A macroscopic α–effect has been seen in the VKS experiment (see Section 8.2.10).
Pétrélis et al. (2003) measured an induced magnetic field perpendicular to the ap-
plied magnetic field which is quadratic in Rm, for small Rm, as shown in Figure 8.8.
Considering symmetry arguments, they have also shown that this magnetic field was
associated to an electric current parallel to the applied magnetic field and that its sign
was determined by the helicity sign. Although there was no clear scale separation in
their experiment, their observation may be understood as a macroscopic α–effect or
Parker effect.

The good agreement (see Section 8.3.6) between the experimental measurements in
the Karlsruhe dynamo and the theoretical prediction of Rädler et al. (1998) using
an α–effect in a mean-field approach (Chapter 1) is an indirect evidence for the
presence of an α–effect in the Karlsruhe experiment (see Figure 8.16). There were
unfortunately no direct measurements in the Karlsruhe apparatus, which would have
allowed a detailed description of the α–effect.
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Figure 8.8 - Components of the total mean magnetic field as a function of the rota-
tion frequency of a disc in the VKS experiment (see Section 8.2.10). The magnetic
field B0 is imposed along the y–axis and the disc is rotating along the z–axis. ◦
symbols are used for 〈Bx〉/B0 ; � for (〈By〉 + B0)/B0 ; � for 〈Bz〉/B0. For low
rotation rates, Bz is linear with the velocity (ω–effect) while Bx exhibits a quadratic
behaviour (second order induction effect or α–effect). Departures from this law are
clearly seen for frequencies larger than 5 Hz. This saturation may be interpreted as
a quenching effect (see Sections 2.7 and 8.3.4) (from Pétrélis et al., 2003).

8.3.4. QUENCHING EFFECTS

In various experiments, both linear and quadratic induction effects tend to saturate
for large magnetic Reynolds number. We refer to this as the quenching effects (see
Section 2.7). This effect is generally associated with magnetic field expulsion from
the moving part of the fluid (see Section 8.3.2) or with a change in the dynamic of
the liquid metal due to the Lorentz forces when the interaction parameter N is large.
A clear evidence for a quenching effect can be seen in Figure 8.9 from Steenbeck et
al. (1968). Electric potentials decrease approximatively as an hyperbola function of
|B0|2 (where B0 is the applied magnetic field). One may conclude that the α–effect
is reduced as the magnetic field increases.

A quenching effect can also be observed regarding the ω–effect. Figure 8.10 shows
the hyperbolic magnetic brake of a vortex by an applied transverse magnetic field.
This behaviour really reflects an effect of the magnetic field on the dynamics, as the
magnetic Reynolds number, Rm, is too low to yield field expulsion.
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Figure 8.9 - Differences in electric potential measured in the α–box experiments
(see Section 8.2.3) as function of the interaction parameter N. The α–effect is
quenched (hyperbolic decrease) when the magnetic field increases (from Steenbeck
et al., 1968).

The departure from linear and quadratic variations of the induced magnetic field
components in the VKS experiment, for high rotation rate of the discs, may also
be interpreted in terms of quenching effects (see Figure 8.8). Careful experimental
analysis of these effects – reducing the efficiency of the α and ω–effects as the mag-
netic field grows – are needed in order to better understand saturation mechanisms.

8.3.5. THE EXPERIMENTAL APPROACH
TO A KINEMATIC DYNAMO

The kinematic approach implies that a given flow (unaltered by the Lorentz force) is
considered. Its ability to induce a self-sustained magnetic field is measured. If this
approach is successful, the growing magnetic field corresponds to the eigenvector
which eigenvalue becomes positive at the dynamo onset. However, in the subcritical
dynamo regime, it is possible to measure the negative eigenvalue of a given magnetic
field and study its variation as the forcing is increased to get closer to its critical
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Figure 8.10 - Variation of the angular velocity ωsolid of a vortex of liquid gallium
over the imposed velocity of the disc ωdisc as function of the Elsasser number Λ
(see Section 8.2.6). The decrease in amplitude of the angular velocity decreases the
amplitude of the induced magnetic field (by ω–effect, see Section 8.3.1). This may
be seen as a ω quenching effect (after Brito et al., 1995).

value for dynamo action. This technique may provide a good approach to estimate
the value of the dynamo onset for a given configuration.

This approach was first used by the Gailitis et al. (1987) group in the Leningrad
experiment (see Section 8.2.5). An oscillating magnetic field, close to the Pono-
marenko dynamo eigenvector, was applied and the magnetic response was mea-
sured inside the container. Figure 8.11 shows that the imposed magnetic field was
significantly amplified by the flow. This amplification was linear in Rm, up to the
maximum value of the tested flow rate, before the experiment had to be stopped.
One may argue that their experiment was ended just before dynamo action could be
achieved.

Alémany et al. (2000) also used this technique to investigate dynamo action in the
secondary pump of the Superphenix fast breeder reactor. Linearly extrapolating the
magnetic field decay rate, they found that the pump velocity (500 rpm) was only
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four times below critical. One may however moderate their conclusion, as there is
no theoretical ground to use a linear extrapolation of the decay rate far from the
dynamo onset.

Lathrop and his collaborators have studied the time relaxation of an applied mag-
netic field (Peffley et al., 2000a,b) on the mechanically forced experiment described
in Section 8.2.9. For a given flow, they imposed a dipolar magnetic field (either ax-
ial m = 0 or equatorial m = 1) of small amplitude (a few mT) for 1 to 10 s. They
turned off the imposed magnetic field and measured the exponential decay. With
no motion, the exponential decay corresponds, as expected, to the Joule decay time
for a sphere. Increasing Rm (Figure 8.12), the decay time increases for m = 0 or
decreases for m = 1 . This result disagrees with the kinematic numerical result of
Dudley & James (1989) which for this type of flow predict the growth an equatorial
dipole. This experimental result shows that the non-axisymmetric part of the flow
(due to the propeller, baffles or turbulent fluctuations) plays a significant role in the
generation of an axisymmetric magnetic field (because of Cowling’s theorem, see
Chapter 1). The broadwidth of the variance of the decay time rates of the magnetic
field, for flows at large values of Rm, is also a good indicator of the turbulence in the
magnetic field generation process (Peffley et al., 2000a). Note that tests have also
been performed with time dependent applied magnetic fields in order to measure the
imaginary part of the eigenvalue.

The experimental kinematic approach which consists in approaching the critical
eigenvalue of a given field is strongly limited by the type of geometry of the applied
magnetic field which can be envisaged. Although there is almost no time constraint
on a kinematic-type dynamo experiment, the geometry of a magnetic eigenvector
derived theoretically can only be reproduced in the laboratory if it is quite simple.

In order to get some kinematic predictions on the onset of dynamo action, water
experiments producing the same velocity flow as in sodium experiments are broadly
performed. In water, velocity measurements are much easier than in sodium, and the
mean flow may be described with a good resolution. Once the experimental velocity
field has been measured, it is used as an input in a numerical simulation to solve
the kinematic dynamo problem. This approach has been used by many groups;
Riga/Dresden group (Stefani et al., 1999), Karlsruhe (Stieglitz & Müller, 2001),
VKS group (Marié et al., 2003), Wisconsin (Forest et al., 2002), Perm (Dobler et
al., 2003), Grenoble (Schaeffer & Cardin, 2005), Léorat et al. (2001).

Numerical kinematic calculations are then used to determine how efficient an av-
eraged flow can be to amplify an initial magnetic field and to produce a dynamo.
Experimentally, in water, it is quite convenient to change the geometry of the device
or the shape of the propellers for example, and check numerically with the new mea-
sured velocity fields if the critical value of Rm has been decreased. Numerically, it
also convenient, once the velocity field is known, to change the boundary conditions,
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Figure 8.11 - Measurement of the inverse ratio of the induced magnetic field 1/B
signal versus flow rates Q (in m3 h−1) for three frequencies of the applied magnetic
field B0 in the first attempt to perform a Ponomarenko experiment in Leningrad (see
Section 8.2.5). The linear extrapolation of the experimental results may indicate the
critical value of the flux rate for dynamo action. Note that the extrapolation would
lead to a critical Rm lower than the theoretical prediction, shown here with a star
around Rm = 19 (from Gailitis et al., 1987).

for example considering insulating or electrically conducting boundaries. Such op-
timisation has been successfully used by the Riga group. Unfortunately, many other
groups have shown that a tiny difference in the averaged velocity field may change
drastically the sign of the eigenvalues (Forest et al., 2003; Marié et al., 2003). Does
it mean that dynamo action is not robust and really depends on very small changes
in the velocity field? This is a good an interestin open question, and it is impor-
tant to note that in this approach, only averaged velocities are considered. It may
be not sufficient, as fluctuations play an important role in the dynamics. Another
point is that only the measured velocity field reflects only the large scale flow. The
small scales of the velocity field, which may for example be important to produce
an α–effect, are not measured and not considered numerically.
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Figure 8.12 - Growth rates (inverse of exponential decay times) λ of an applied
magnetic field – after its suppression – as a function of magnetic Reynolds number
(Rm) in the College Park experiment (see Section 8.2.9). m = 0 refers to an im-
posed magnetic field aligned with the axis of rotation of the propellers, and m = 1
to a perpendicular field. The growth rates are normalised by the ohmic decay rate.
In the numerical model of kinematic dynamo of Dudley & James (1989), the m = 1
curve increases instead and crosses the critical axis for a value of Rm ≈ 55 (from
Peffley et al., 2000b)

8.3.6. THE ONSET OF DYNAMO ACTION

Two liquid metal experiments have exhibited a self-induced magnetic field (Gaili-
tis et al., 2000, Müller & Stieglitz, 2000). Both experiments have been built (see
Sections 8.2.7,8.2.8) in order to reproduce well known kinematic dynamo flows.

THE RIGA DYNAMO

Figure 8.13 shows the measured magnetic field as a function of time for different
speeds of the propeller in the Riga dynamo (Gailitis et al., 2000). As expected,
the growing magnetic field is a propagating wave along the axis of the experiment
(Ponomarenko, 1973). The decay rate and the frequency of the growing magnetic
field mode were measured and compared to the predicted ones (Figure 8.14). Predic-
tions have been done relying on a numerical kinematic approach using the averaged

© 2007 by Université Joseph Fourier



8.3 – WHAT HAVE WE LEARNT FROM THE EXPERIMENTAL APPROACH? 395

1

2200

2000

1800

1600

1400

1200

1000

800

600

400

200

0

0.5

B
 (

m
T

)

R
ot

at
io

n 
ra

te
 (

rp
m

)

magnetic field Br

0

– 0.5

0.2 1925

– 1

0 100

120 130 140 150

200 300 400
t (s)

0.1

0

– 0.1

– 0.2

1875

1825

1775

rotation rate

rotation
magnetic field Bz

Figure 8.13 - Time evolution of the induced magnetic field (solid line) in the Riga
dynamo (see Section 8.2.7). The rotation rate of the propeller is reported (dashed
line) and shows the critical rate (around 1925 rpm as shown in the close up), from
Gailitis et al., 2002b).

velocity field (Stefani et al., 1999; Gailitis et al., 2002b). The onset is correctly
described by the numerical approach (to within 10% of precision), despite the fact
the flow turbulence (of a few percents, Gailitis, private communication) is omitted in
the central pipe of the experiment. The frequency of the dynamo solution does not
seem to be influenced by the magnetic field saturation (Figure 8.14). Does it imply
that the back reaction is very small in the Riga dynamo? The answer to this question
is still under investigation. However, measurements of the magnetic field along the
axis of the experiment show that dynamo action is mainly produced at the top of
the experiment close to the propeller (Gailitis et al., 2001). The onset of dynamo
action could also be seen in the evolution of the power dissipated in the experiment
as shown in Figure 8.15. Below the onset, the power needed to maintain the rotation
rate of the propeller varies a the cubic power of the rotating rate, while there a clear
deviation from this law is observed above the onset (Gailitis et al., 2001).

THE KARLSRUHE DYNAMO

A self-induced magnetic field was observed in the Karlsruhe experiment (Stieglitz
& Müller, 2001) for imposed flow rates Qsodium (see Section 8.2.8) comparable to
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Figure 8.14 - Measurements and predictions of critical growth rates and associated
frequency of the magnetic mode for different rotation rates in the Riga dynamo.
Experimental data agree within 10% with numerical predictions. Above the onset,
the frequency seems equal to the one predicted by the linear theory (from Gailitis et
al., 2002b).
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the predicted onsets (Figure 8.16), the exact experimental onset being lower than the
one predicted by Rädler et al. (1998) and by Tilgner (1997) by only 10%. However,
numerical predictions used very simplified models of the actual experimental fluid
flow (for example only straight parts of the tubes were included in the modelling).
Measurements of the induced magnetic field, as well as the pressure drop in the
piping system, seems to show a smooth, as opposed to a sharp, Hopf bifurcation
(Müller et al., 2004). Before the onset, the measured induced magnetic field may
be understood as the amplification (by a factor 10) of the Earth’s magnetic field (see
Section 8.3.5). Typical growth rates of 10 s−1 could be deduced from Stieglitz et al.
(2001) during the transient after the onset; these are ten times greater than the ones
predicted by Tilgner in 1997. Nevertheless, the spatial distribution of the experi-
mental saturated magnetic field (Stieglitz & Müller, 2002) is in agreement with the
one predicted by the numerical studies of Tilgner (1997) ad Rädler et al.(2002). The
growing magnetic field in the Karlsruhe experiment however varies with the applied
external imposed magnetic field and may change its sign depending on initial con-
ditions (Müller et al., 2004). This behaviour was also reproduced numerically by
Tilgner & Busse (2002).

As in the case of the Riga dynamo, the Karlsruhe dynamo numerical modelling
agrees remarkably well with the prediction of the kinematic or mean field approach.
The mean field approach can be seen to be very successful in the Karlsruhe dynamo
experiment, but that could be expected given that the experiment has been explicitely
built to produce a two-scale dynamo, suitable to the mean field approach: the ve-
locity field is small scale (size of the helicoidal tube) whereas the magnetic field is
dominated by the large scale (size of the dynamo device). The Karlsruhe experiment
may be seen as an experimental evidence in favour of the validity of the mean field
theory in MHD.

8.3.7. THE EFFECT OF TURBULENCE

Laminar description of the velocity flow has enabled a good prediction of the on-
set in both successful dynamo experiments. Nevertheless, these flows have to be
turbulent considering the large values of the Reynolds number Re. It is not easy
to understand why turbulence does not affect more drastically the onset of dynamo
action.

For smaller experiments, the kinematic numerical studies devoted to predict the on-
set of dynamo action with the averaged large scale flow have predicted dynamo
action in the parameter regime in which experiments were performed, but dynamo
action was never observed (Peffley et al., 2000; Bourgoin et al., 2002). One may
argue that the averaged flow, which is numerically used for kinematic computations,
is unlikely to be realised during the real experiment. However the same approach
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Figure 8.16 - Phase diagram of the Karlsruhe dynamo (see Section 8.2.8). VC and
VH (in m3 h−1) are the flow rates in the central pipes and in the helicoidal pipes
respectively. Open circles (◦) correspond to non dynamo states, while full circles (•)
are dynamo states. A dashed line separates those. In the upper corner, the evolution
of magnetic energy (|B|2) is presented against the helicoidal flux VH for a constant
VC . The linear fit above and below the onset very precisely determines the critical
value for the onset. Mean field theory predictions of the dynamo state are shown in
grey (upper right corner) and a typical onset determined by the numerical kinematic
approach appears as a filled square (from Stieglitz & Müller, 2001).
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was successfully used in the case of the Riga and Karlsruhe dynamo experiments.
One may also argue that the characteristic turbulent time is much smaller than the
exponential growth rate of the dynamo. It is known, from kinematic dynamo stud-
ies, that only small changes in the velocity field may strongly change the growth rate
of the magnetic field. If a turbulent experiment could therefore exhibit a favourable
dynamo flow for a certain time, it may not last long enough to start a dynamo.

Sisan et al. (2003) in the College Park’s experiment (see Section 8.2.9) have clearly
identified the effect of an imposed magnetic field on the dynamic regime of their
experiment. For a given magnetic Reynolds number (Rm ≈ 7.5), they varied the in-
tensity of the imposed magnetic field. As the interaction parameter N increases, the
measured induced magnetic field exhibits different time and amplitude variations,
which may reveal different magneto-turbulent regimes. Five distinct regimes of the
induced magnetic field are identified in Figure 8.17.

On the edge of the experimental dynamos context, MHD turbulence experiments
have been built to study fundamental properties of the flow (applied to metallurgy),
see Moreau (1998). In general terms, the presence of a strong magnetic field tends to
form quasi-two-dimensional flows aligned with the magnetic field (Moreau, 1990)
that can exhibit 2D turbulent properties (Alémany et al., 1979). A recent experi-
mental study of such MHD turbulence has been carried out by Messadek & Moreau
(2002) on unstable shear flows at low Rm. MHD turbulence enlarges the thickness
of the shear zone by two orders of magnitude. This enhances the momentum trans-
port and mixing across the layer. As in many other experiments, the flow turbulence
is characterised by measurements of magnetic and kinetic spectra.

8.3.8. SPECTRA

Turbulence theories generally predict the behaviour of scalar fields in a fluid flow in
terms of spectral decomposition. Although these spectra are generally in the spatial
domain, it is not convenient to measure the spatial distribution of a field during an
experiment. Instead, time variations of theses fields are measured, and the Taylor
(or ergodicity) hypothesis connecting time and spectral variations for homogeneous
turbulence (Frisch, 1995; Lesieur, 1997) is assumed.

Kinetic energy spectra are generally deduced from pressure measurements while
magnetic energy spectra come from the measurement of a component of the mag-
netic field. In presence of an external magnetic field and with a low Rm flow, the de-
pendence between the two spectra proceeds from the induction equation. If one sup-
poses the kinetic energy to vary as K ∝ kα (k is the wavenumber and α < 1), using
the induction equation, one can show that the magnetic energy varies as M ∝ kα−2

(Moffatt, 1978; Moreau, 1990).
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Figure 8.17 - Time evolution of the induced magnetic field B for different values
of the interaction parameter N in the mechanically forced experiment in College
Park (see Section 8.2.9). The rotation rate of the propellers is fixed (Rm = 7.5).
Different regimes may be identified by considering the frequency and amplitude of
the measured magnetic field (from Sisan et al., 2003).
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prediction (low N). Below this frequency, the spectra is hyperbolic (from Bourgoin
et al., 2002).

Depending on the intensity of the imposed magnetic field, which is measured by
the interaction parameter N, one may get two types of spectra dependence. For low
N, the turbulence is of the Kolmogorov type with K ∝ k−5/3 and M ∝ k−11/3.
This has been seen in many experiments. The VKS team (Odier et al., 1998; Bour-
goin et al., 2002) has documented this regime, in which the magnetic field behaves
as a passive vector. In Figure 8.18, magnetic measurements show a clear −11/3
power law above the frequency of the driving disc, while the authors proposed an
hyperbolic range of frequencies for the induced magnetic field fluctuations below
this frequency. Although such a k−1 behaviour is also reported in the Karlsruhe ex-
periment (Müller et al., 2004) and in the Maryland experiment (D. Lathrop, private
communication), the physical mechanism which leads to such a power law is not yet
fully understood.

For strong magnetic field (high N), Alémany et al. (1979) found K ∝ k−3 and
M ∝ k−5 in an experiment in which turbulence was produced by the motion of a
grid and the velocity was measured using quartz-coated hot film probes. As shown
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by the spectrum dependence, the Joule effect strongly influences the energy dissi-
pation rate, and leads to an anisotropic flow during the decay of turbulence. The
−3 exponent of the kinetic energy may be deduced from the balance between the
angular transfer time and the Joule dissipation time. A second experiment has been
performed to study this regime, but under stationary forcing. Messadek & Moreau
(2002) found the −5/3 exponent for the spectral kinetic energy at low N and −3
exponent at high N.

Under a dynamo state, power spectral density of the magnetic field have been mea-
sured in the Karlruhe experiment (Stieglitz et al., 2002, Müller et al., 2004). Fig-
ure 8.19 shows typical spectra of the induced magnetic field inside the container (see
Section 8.2.8). Above the critical flow rate (VC ≈ 120 m3 h−1), a self-induced mag-
netic field is generated and a peak appears in the magnetic spectrum around 1Hz.
One would like to interpret the frequency of this peak as the injecting magnetic en-
ergy scale using the ergodicity hypothesis. However, the frequency associated to the
helicoidal flow may be evaluated to 5Hz. This value is too large to explain the power
peak. Moreover, the frequency of the power peak changes with the supercriticality
of the dynamo and not with the volumetric rate of the helicoidal tube. Note that
Müller et al. (2004) proposed an interpretation in term of Alfvén waves travelling
along the cylinders. For larger frequencies (above the peak), the Joule damping of
the magnetic field leads to a large negative exponent in the power spectrum (from
−3 to −5, and sometimes even smaller). The −5 exponent is in agreement with
the results of Alémany et al. (1979). For smaller frequencies (below the peak), they
found a f−1 type behaviour like in Bourgoin et al. (2002) study. In the context of
their dynamo, they link this observation to the prediction of Pouquet et al. (1976)
based on theoretical arguments of inverse cascade of magnetic helicity.

Experimental spectra at large Rm are always difficult to interpret. It is difficult to
get a clear power law for a decade in frequency and to infer an exponent without
any theoretical background is rather conjectural. As already mentioned, conversion
from temporal to spatial field are based on the ergodicity hypothesis, which remains
an hypothesis in MHD flows. Furthermore, theories are generally done for Pm = 1
(Biskamp, 1993) and the compatibility of theoretical predictions with with liquid
metal experiments is not straightforward.

8.3.9. THE β–EFFECT AND TURBULENT VISCOSITY

The β–effect is a turbulent effect associated to the ∇ × (u × B) in the induction
equation and can be modelled as a magnetic dissipative effect. In some regimes,
the β–effect could modify the magnetic diffusivity of conducting fluids. Reighard
& Brown (2001) have measured the apparent magnetic diffusivity of sodium as a
function of the magnetic Reynolds number Rm. They found a reduction from the
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Figure 8.19 - Power spectral density of a component of the magnetic field (perpen-
dicular to the axis of the tubes at the center of the container) in the Karlsruhe dynamo
experiment (see Section 8.2.8). The helicoidal flux rates are set to 100 m3 h−1 and
the central flux rate is increased from 106 to 136 m3 h−1, the onset of dynamo action
occurring around 120 m3 h−1. A central peak appears above the onset, separating the
spectra in two parts: an hyperbolic range for low frequency and a steeper exponent
(−3 to −5) for higher frequency (from Müller et al., 2004).

molecular value of the electrical conductivity of 4% at Rm of order 10 . No such
effect has ever been measured in other sodium experiments. Nevertheless, the mean
field theory developed by Rädler et al. (2002) evaluated a β–effect between 1 to 10%
of the molecular value in the Karlsruhe dynamo flow. The good agreement between
the mean field approach and the experimental results may be interpreted an indirect
observation of the β–effect. Moreover, Tilgner & Busse (2002) with their kinematic
approach, need to assume an increased value of the magnetic diffusivity in order to
explain correctly the precise position of the onset of the Karlsruhe dynamo. In that
case, they associate the enhanced magnetic diffusivity to the averaged diffusivity of
sodium and stainless steel, rather than to the effect of turbulence.

Similarly, the nonlinear term in velocity in the momentum equation may be mod-
elled as a dissipative viscous effect. The turbulent viscosity (and more sophisticated
models) is largely used in geophysical and astrophysical numerical fluid dynamics
(meteorological or oceanographic models for example). Direct experimental mea-
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surements of the turbulent viscosity are quite difficult, in particular as this would re-
quire very precise maps of the velocity field within the bulk of the flow. In a Couette
experiment, Lathrop et al. (1992) interpreted the measured torque delivered by the
rotating motor in terms of turbulent viscosity. They proposed a law for the turbulent
viscosity as a function of the hydrodynamic Reynolds number, Re. More recently,
Brito et al. (2004) have shown experimental evidences for turbulent viscosity in the
context of a rotating flow.

8.3.10. SATURATION OF THE DYNAMO

The two successful experimental dynamos exhibited a saturated state of the self-
sustained magnetic field after a period of exponential growth (this exponential growth
is shown in Figure 8.13 in the case of the Riga dynamo). In both experiments, the
injected mechanical power required to drive the flow was measured as a function
of the averaged velocity of the fluid flow. Figure 8.15 shows an increase of around
10 kW after the onset of the dynamo regime in the Riga experiment. If one assumes
that this increase of power is directly dissipated by Joule effect, one can estimate a
typical dissipation length scale Ld:

Pj ∝
B2L3

μ2
0σL2

d

≈ 104 W which yields Ld ≈ 10−3 m (8.2)

with B = 1 mT, L = 1 m. This Joule dissipation scale is much larger than the
viscous dissipation scale (Ld ≈ 10−6 m, if Re ≈ 1 with U ≈ 1 m s−1) and may
be the main dissipative process in the dynamo state. At the dissipation scale, Rm
is small and the results obtained for low Rm turbulence should apply, such as the
spectrum dependence in k−3 for the kinetic energy (see Section 8.3.8). Figure 8.19
shows indeed a steep tail of the spectra (for large frequencies), which may be the
signature of the low Rm turbulence.

The balance between the nonlinear velocity term and the Lorentz force may allow to
predict the saturated magnetic field intensity. Pétrélis & Fauve (2001) and Tilgner &
Busse (2002) had to introduce a turbulent viscosity (at least 104 times the molecular
one) to explain the observed value of the saturated magnetic field in Karlsruhe and
Riga. Their approach excludes any laminar viscous balance which would lead to an
intensity of the saturated magnetic field much too low compared to the experimental
measurements.

The saturation mechanism may also be associated with a change in the “large scale”
fluid flow dynamics after the onset of the dynamo. In Riga, observations of the sat-
urated magnetic field show indeed a dependence along the height of the experiment
(Gailitis et al., 2001) and sodium originally at rest (at the edge of the container, see
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Section 8.2.7) is driven into motion after the onset (Gailitis, private communica-
tion). The same idea was proposed by Tilgner & Busse (2001) in the context of the
Karlsruhe experiment with the presence of vortices of sodium in between the tubes
of the experiment (see Section 8.2.8).

8.4. CONCLUSIONS

Two experimental dynamos (Gailitis et al., 2000; Müller & Stieglitz, 2000) have
been observed in the laboratory. They experimentally demonstrated the existence of
a self-sustained dynamo regime in fluid flow, in good agreement with the theoretical
predictions. These two experiments have reported dynamo action for the parameters
predicted by analytical and numerical methods, even if the experiments could not
exactly reproduce the idealised models (boundary conditions, presence of stainless
steel, small scale flow, turbulence). These two successes are really associated to the
choice of very robust flows to produce dynamo action. In the dynamo state, these
two experiments exhibit results (power, spectra, etc.) that are not fully understood
yet and many questions remain regarding the presence of a large magnetic field.
Homogeneous experiments, appear to be needed to address these questions.

Surprisingly, in the case of homogeneous experiments, the dynamo onset seems to
vary significantly with small variations in the velocity field as mentioned above. We
can conclude that the robustness of these flows to produce a self-sustained magnetic
field is weaker. Lathrop and his collaborators investigated different configurations to
try and achieve dynamo action in their experimental set-up. Shew et al. (2001) report
on tests with change of propellers, addition of copper rings or plates at the equator,
change of baffles in the sodium tank. A clear variation in the exponential decay times
of the imposed magnetic fields associated with these changes is observed but it is
difficult to infer general properties on dynamo mechanism from these tests. Shew et
al. (2002) built an updated version of the Lowes & Wilkinson dynamo, in which the
external solid housing is replaced by liquid sodium. No dynamo has been observed
in this configuration. The VKS team also changed the electrical conductivity of the
boundaries by adding a copper housing to their vessel, without observing dynamo
action (Bourgoin et al., 2002), although a numerical kinematic study predicted a
reduction the critical Rm, by a factor of two, when the boundaries were changed
from insulating to perfectly conducting (Marié et al., 2002). Martin et al. (2000)
and Frick et al. (2002) have tried to increase the magnetic permeability of the liq-
uid metal by using ferromagnetic iron beads or small particles. Frick et al. (2002)
proposed a linear law for low concentration of small particles (0.01 to 0.1 mm of
diameter) which may increase the magnetic Reynolds number by a factor of two.
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temptative line that may separate the successful experiments from the non-dynamo
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Building an experimental dynamo is a very long and hard enterprise. This is why
most of the homogeneous dynamo experiments, or projects, presented throughout
this survey expect to observe dynamo action in the near future. Out of the groups
that are currently working in this area, we may predict that two of them will soon
observe dynamo action: The VKS team is planning to run a second version of their
Von Kàrmàn experiment in a larger container, with new optimised propellers and
a cooling system unit. The College park group is building a very large rotating
spherical experiment with 15 tons of sodium, which should have all the ingredients
to self-sustain a magnetic field, if one dares to compare it with natural planetary
dynamos.

Size and power are the two main factors to determine the actual cost of an experi-
ment. Small experiments are easier to build and to modify. Up to now, only large
experiments have been able to self-induce a magnetic field in liquid sodium. Clearly,
in order to reach a given magnetic Reynolds number, one has to find a trade-off be-
tween the typical scale of the flow and the typical velocity (and consequently power).
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Too much power injected in a small experiment may yield cooling problems. On the
contrary, large scale experiments need a significant power input to reach high fluid
velocities. Nataf (2003) produced an interesting representation of the power versus
size of dynamo experiments. We show an updated version of this graph in Fig-
ure 8.20 including newer projects. Note however that this graph does not take into
account the type of flow generated into the vessel, which may be a crucial point
when the vigour of the flow is close the onset of dynamo action.

In the coming years, the main challenge in this field is to understand MHD turbu-
lence. Studies of spectra will be valuable and enable a classification of different
regimes. As noted in Section 8.3.8, experimental data are generally measured as a
function of time and we rely on the ergodicity hypothesis to interpret these spectra
in term of spatial behaviour of the MHD turbulence. Theories with very low Prandtl
numbers will be needed to help the interpretation of liquid sodium experiments.

Finally, we note that global rotation could be a key ingredient for dynamo action.
The presence of rotation provides a prefered direction in the flow and the isotropic
turbulence can be replaced with quasi-geostrophic turbulence. This is also the case
with precessional flows, in which Gans (1970) has observed a large amplification of
the magnetic field, still unexplained. Quasi-geostrophic dynamos have recently been
computed based on shear flows taking into account the properties of a rapidly rotat-
ing flow (Schaeffer & Cardin, 2006). These preliminary results are encouraging for
experimental dynamo modelling of rotating planets (low Pm, low E), because they
exhibit robust dynamos that can be understood under the αω–dynamo formalism.
We leave the reader with an interesting open question: does the rotation increase the
robustness and the ability of the flow to produce the dynamo action?
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CHAPTER 9

PROSPECTS

Emmanuel Dormy & Andrew Soward

Dynamos on an impressive range of scales have been addressed in this book ranging
from the experimental scale of a few meters to galactic discs, i.e. some 1020 m.
Even if one restricts attention to natural dynamos, the Earth’s core or the Sun would
constitute objects on the nano, or even a pico, scale when measured in Galactic
units! As we have seen in this book, it is quite remarkable that a common formalism
(and similar physical processes) governs the dynamics of dynamos on such a wide
disparity of scales. Not only do the same governing equations (of course, under
different parameter regimes) apply to these objects, but the same magnetic field
generating instability appears to develop; albeit in the “slow dynamo” regime for
the small planetary systems, and in “fast dynamo” regime for larger objects. This
ability of the dynamo instability to develop in such a large variety of natural bodies
is probably its most striking property.

Thanks to this large variety of applications, progress on understanding dynamo ac-
tion is being achieved in the various fields of geophysics, planetary physics, solar
physics and astrophysics. After many years of largely independent development,
these fields of research have been increasingly interactive over the last few years.
This has led to fruitful developments which are a sign of maturity for the subject.

Researchers trying to address the origin of magnetic fields in natural objects usually
combine the three approaches of observations, theory and numerics as presented in
this book. Each is progressing independently at a rapid pace.

Our knowledge of the present geomagnetic field and its secular variation increases
as satellite measurements become more numerous and start to cover longer periods
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of time. Recently Olsen et al. (2006) were able to provide a representation of the
static (core and crustal) field up to spherical harmonic degree � = 40, and of the
first time derivative up to � = 15 relying on measurements from CHAMP, Ørsted,
and SAC-C magnetic satellite data. On longer timescales, paleomagnetism yields
an ever more refined description of the past magnetic field of the Earth and its evo-
lution. Recently, the intensity variation of the geomagnetic field has been carefully
reconstructed over the past two million years (Valet et al., 2005). This has led to
a description of the field intensity variations spanning the five reversals which have
occurred during this period. They appear to be characterised by a slow decrease of
the field intensity (over 60-80 kyr) followed by a rapid recovery of the field strength
immediately after the reversals. On much longer time scales, research on geomag-
netic reversal chronology has recently pointed to the existence of three superchrons
(Pavlov & Gallet, 2005); one during the Cretaceous (some 100 Myr ago, see Chap-
ter 4), another during the Late Paleozoic (some 300 Myr ago) and a third during the
Lower and Middle Ordovician (some 475 Myr ago). The existence of these repeated
superchrons as well as the variation of the reversal rate in between (from 0 to 10
per Myr) provide important constraints on geodynamo modelling. Observation of
our star, the Sun, is also improving with data from the Hinode satellite, which will
soon be supplemented by the STEREO and SDO satellites due to be flying together
sometime in the next three years. This should lead to a more detailed description of
the magnetic field in the corona and its connection with the solar dynamo.

The numerical simulation of natural dynamos has seen rapid developments during
the last ten years and much of this progress has been reported in this book. A nu-
merical model, originally developed for the Sun (Gilman & Glatzmaier, 1981; Glatz-
maier, 1985a,b), has been extremely successful in the geodynamo context (see Chap-
ter 4) and recently has been extended to address some issues in planetary physics,
such as the banded structure of Jupiter (Heimpel et al., 2005) and the low intensity
of Mercury’s magnetic field (Christensen, 2006). Despite these successes, future
progress depends on a combination of numerical, analytical and observational ap-
proaches.

Beyond the natural applications described, another community from experimental
physics is contributing to the development of our understanding of dynamo action.
Following the success of the first two experimental fluid dynamos in Riga and Karl-
sruhe, many groups throughout the world are developing and testing new experimen-
tal setups; these are reviewed in Chapter 8. Indeed, progress in this area is so rapid
that a new successful experimental result was obtained during the fruition of this
book by the VKS group (see Section 8.2.10). They have reported a self-excited dy-
namo in an unconstrained turbulent flow of liquid Sodium (Monchaux et al., 2007).
The experiment is of course somewhat dissimilar (both in geometry and in param-
eter regime) from natural dynamos; yet we stress that in many respects it is closer
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to the natural dynamo applications than numerical models, particularly in respect to
the value of the magnetic Prandtl number. In this respect, this finding is exciting as
it opens the way to an experimental understanding of dynamo action. In addition,
the connection with natural dynamos is reinforced by the existence of parameter
regimes for which the field reverses either regularly of chaotically (see Berhanu et
al., 2007). The possibility of dynamo experiments performed with an unconstrained
flow, exhibiting rich temporal behaviour, will hopefully lead to a productive period
of research on natural dynamos.

We should not conclude this chapter without commenting on our environment. While
the objective of this book has been to cover the mathematical background of natural
dynamos, the existence of magnetic fields in astrophysical bodies affects our every-
day living conditions. Indeed, it is well known that the Earth’s magnetic field acts
as a shield that deflects the solar wind. The weakening of this shield, associated
with the recent decay of the Earth’s dipole strength, could therefore be a worry. The
decay however appears to be compatible with a local fluctuation rather than a long
term trend which could be an environmental concern (Dormy, 2006). Not surpris-
ingly, the Earth’s climate shows links with solar activity, which might even be the
origin of quasi-periodic glacial events (Braun et al., 2005). Furthermore, the Earth’s
magnetic field may be connected to the climate, because variations in the geometry
of the geomagnetic field might result in enhanced cosmic-ray induced nucleation of
clouds and so drive the climate (Courtillot et al., 2007). On the solar side, there
are suggestions (Dikpati et al., 2006a, 2006b; Hathaway & Wilson, 2006) that the
current Solar cycle (due to peak in 2010 or 2011) will be characterised by a strong
increase in the solar activity. This could have serious consequences on the Earth and
the climate (Clark, 2006). Tobias et al. (2006) however noted that episodes of high
activity have, in the past, often been followed by Grand Minima (periods of severely
reduced magnetic activity).

While the links between the Earth’s magnetic field, the Solar magnetic field and the
climate/environmental concerns are very likely, we are still far from relating them
to dynamo action. We hope the reader will be convinced, as we are, that the beauty
of this subject is such that it is enough to justify its study, independently of any
environmental concerns.
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APPENDIX A

VECTORS AND COORDINATES

CARTESIAN COORDINATES
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∂Vz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A.6)
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CYLINDRICAL POLAR COORDINATES

x

z

y
O

s

M

z

�

∇Φ =
∂Φ

∂s
es +

1

s

∂Φ

∂φ
eφ +

∂Φ

∂z
ez , (A.7)

∇ · V =
1

s

∂

∂s
(sVs) +

1

s

∂Vφ

∂φ
+

∂Vz

∂z
, (A.8)

∇ × V =

[
1

s

∂Vz

∂φ
− ∂Vφ

∂z

]
es

+

[
∂Vs

∂z
− ∂Vz

∂s

]
eφ

+

[
1

s

∂

∂s
(s Vφ) − 1

s

∂Vs

∂φ

]
ez , (A.9)

ΔΦ =
∂2Φ

∂s2
+

1

s

∂Φ

∂s
+

1

s2

∂2Φ

∂φ2
+

∂2Φ

∂z2
, (A.10)

ΔV = ∇ (∇ · V) − ∇ × (∇ × V) , (A.11)

∇V =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂Vs

∂s

1

s

∂Vs

∂φ
− Vφ

s

∂Vs

∂z
∂Vφ

∂s

1

s

∂Vφ

∂φ
+

Vs

s

∂Vφ

∂z
∂Vz

∂s

1

s

∂Vz

∂φ

∂Vz

∂z

⎤
⎥⎥⎥⎥⎥⎥⎦

. (A.12)
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SPHERICAL POLAR COORDINATES

x

y

θ
r

M

z

�

O

∇ Φ =
∂Φ

∂r
er +

1

r

∂Φ

∂θ
eθ +

1

r sin θ

∂Φ

∂φ
eφ , (A.13)

∇ · V =
1

r2

∂

∂r

(
r2 Vr

)
+

1

r sin θ

∂

∂θ
(sin θ Vθ) +

1

r sin θ

∂Vφ

∂φ
, (A.14)

∇ × V =
1

r sin θ

[
∂

∂θ
(sin θ Vφ) − ∂Vθ

∂φ

]
er

+
1

r

[
1

sin θ

∂Vr

∂φ
− ∂

∂r
(r Vφ)

]
eθ

+
1

r

[
∂

∂r
(r Vθ) −

∂Vr

∂θ

]
eφ , (A.15)

ΔΦ =
∂2Φ

∂r2
+

2

r

∂Φ

∂r
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
+

1

r2 sin2 θ

∂2Φ

∂φ2
, (A.16)

L2 Φ = − 1

sin θ

∂

∂θ

(
sin θ

∂Φ

∂θ

)
− 1

sin2 θ

∂2Φ

∂φ2
, (A.17)

ΔV = ∇ (∇ · V) − ∇ × (∇ × V) , (A.18)

∇V =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂Vr

∂r

1

r

∂Vr

∂θ
− Vθ

r

1

r sin θ

∂Vr

∂φ
− Vφ

r
∂Vθ

∂r

1

r

∂Vθ

∂θ
+

Vr

r

1

r sin θ

(
∂Vθ

∂φ
− Vφ cos θ

)
∂Vφ

∂r

1

r

∂Vφ

∂θ

1

r sin θ

(
∂Vφ

∂φ
+ Vr sin θ + Vθ cos θ

)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(A.19)
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VECTOR IDENTITIES

∇ · (∇ × V)=0 , (A.20)
∇ × (∇ × V)=∇(∇ · V) − ΔV , (A.21)

∇ · (∇Φ)=Δ Φ , (A.22)
∇ × (∇Φ)=0 , (A.23)
∇ · (ΦV)=Φ ∇ · V + V · ∇Φ , (A.24)

∇ × (ΦV)=Φ∇ × V + (∇Φ) × V , (A.25)
∇ · (V × W)=W · (∇ × V) − V · (∇ × W) , (A.26)

∇ × (V × W)=V (∇ · W) − W (∇ · V)

+(W · ∇)V − (V · ∇)W , (A.27)
∇ (V · W)=V × (∇ × W) + W × (∇ × V)

+(V · ∇)W + (W · ∇)V . (A.28)

GREEN’S FORMULAE

∫
D

((∇Φ) · V + Φ(∇ · V)) dV=

∫
∂D

Φ(V · n) dS , (A.29)∫
D

(∇Φ · ∇Ψ + ΦΔΨ) dV=

∫
∂D

Φ∇Ψ · dS , (A.30)∫
D

(ΦΔΨ − ΨΔΦ) dV =

∫
∂D

(Φ∇Ψ − Ψ∇Φ) · dS , (A.31)∫
D

(V · (∇ × W) − (∇ × V) · W) dV=

∫
∂D

(V × n) · W dS . (A.32)
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APPENDIX B

POLOIDAL–TOROIDAL
DECOMPOSITION

The poloidal–toroidal decomposition is often used in this book in the spherical ge-
ometry (other decompostions can be constructed relying on other basis vectors). It
relies on the fact any solenoidal vector field can be expressed as

V = ∇ × ∇ × (r β)︸ ︷︷ ︸
poloidal component

+ ∇ × (r γ) ,︸ ︷︷ ︸
toroidal component

(B.1)

where r is the position vector r = rer. The scalar functions β and γ are rendered
unique by requiring

〈β〉r = 〈γ〉r = 0 , (B.2)

where 〈·〉r denotes the average on the spherical surface of radius r.

To demonstrate (B.1), we start from the representation

V = α r + ∇ × β r + ∇ × ∇ × γ′ r (B.3)

of any vector field in R
3, where α, β, γ′ are functions of r, θ, φ, and demonstrate

that αr may be expressed in the form

αr = ∇ × ∇ × γ′′ r (B.4)

for some function γ′′(r, θ, φ).

Since V is solenoidal, it follows from (B.3) that ∇ ·(αr) = 0 which in turn implies

r
∂α

∂r
+ 3α = 0 and thus α =

α̂

r3
, (B.5a,b)
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where α̂ is a function of θ and φ only, We express α̂(θ, φ) in terms of its mean part
α = 〈α̂〉r, a constant, and its remaining fluctuating part as

α̂(θ, φ) = α + L2

(
δ̂(θ, φ)

)
, (B.6)

where L2 is the operator defined in (A.17). Then on substitution into (B.3) we obtain

V · r =
1

r2

(
α + L2(δ̂)

)
+ (∇ × β r) · r︸ ︷︷ ︸

=0

+ (∇ × ∇ × γ′ r) · r︸ ︷︷ ︸
=L2(γ′)

. (B.7)

Now, since ∇ · V = 0 everywhere, it follows that the spherical surface average of
V · r, namely

〈V · r〉r =
1

r2
α +

1

r2
〈L2(δ̂)〉r︸ ︷︷ ︸

=0

+ 〈L2(γ
′)〉r︸ ︷︷ ︸

=0

, (B.8)

vanishes, with the consequence
α = 0 . (B.9)

Thus, as anticipated in (B.4), the first term in (B.3) can be rewritten in the form

α r =
1

r3
L2

(
δ̂(θ, φ)

)
r = ∇×∇ × γ′′ r , (B.10)

where γ′′ = δ̂/r . It follows that any solenoidal vector field can be expressed in the
form (B.1) as

V = ∇ × β r + ∇ × ∇ × γ r , (B.11)

where γ = γ′ + γ′′ .

The functions β and γ are obtained by inverting

L2(β) = (∇ × V) · r and L2(γ) = V · r (B.12a,b)

subject to 〈β〉r = 〈γ〉r = 0 [see (B.2)], which renders them unique. This inversion
is usually done using spherical harmonics Y m

� ∝ Pm
� eimφ, which are the eigenfunc-

tions of L2 with
L2Y

m
� = �(� + 1) Y m

� . (B.13)

Relative to spherical polar coordinates, the poloidal–toroidal decomposition (B.1),
equivalently (B.11), has the following explicit form:

Vr =
1

r
L2(γ) , (B.14a)

Vθ =
1

sin θ

∂β

∂φ
+

∂

∂θ

[
1

r

∂

∂r
(rγ)

]
, (B.14b)

Vφ = −∂β

∂θ
+

1

sin θ

∂

∂φ

[
1

r

∂

∂r
(rγ)

]
. (B.14c)
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APPENDIX C

TAYLOR’S CONSTRAINT

TAYLOR’S CONSTRAINT
IN A DEFORMED SPHERICAL CAVITY

Taylor’s constraint is generally discussed within the context of fluid contained within
a sphere or spherical shell as in Sections 4.3.1 and 4.3.2. However, Taylor’s idea

of boundaries with an undulating surface, (bumps, topography) as explored by Bell
& Soward (1996). Furthermore, the degenerate case of plane parallel boundaries

worthy of separate attention and has been discussed by Rotvig & Jones (2002).

In this Appendix we investigate the steady velocity field u(x) and pressure distribu-
tion p(x), which in dimensionless units solves the inhomogeneous problem

2 ez × u = −∇p + F , ∇ · u = 0 (C.1a,b)

subject to u·n = 0 on the boundary Σ. Here the force F(x) is assumed to summarise
all the remaining terms in the equation of motion. In Taylor’s original application
F was envisaged to be the Lorentz force but, from a more general point of view, F
could include terms like the buoyancy force and in unsteady applications even the
inertia term.

We introduce the coordinate x⊥ ≡ (x, y) (= x−z ez) in the plane z = 0 and assume
that every line x⊥ = constant, parallel to the rotation z–axis, which intersects the
boundary, does so at two points z = h+(x⊥) (upper surface Σ+) and z = −h−(x⊥)
(lower surface Σ−) separated by the distance h = h++h− ≥ 0. The entire container

© 2007 by Université Joseph Fourier
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surface Σ is the composition Σ ≡ Σ+∪Σ−, e.g. for a sphere Σ+ and Σ− would be the
boundaries of the Northern and Southern hemispheres respectively. We introduce
the outward normals

n±(x⊥) = ± ez − ∇h± for (x⊥ ,±h±) ∈ Σ± (C.2a)

and the vector

t(x⊥) = n+ × n− tangent to both Σ±: t · n± = 0 . (C.2b,c)

They have the useful properties:

ez × t = − (n+ + n−) = ∇h , ez · n± = ± 1 , (C.2d,e)

±n∓ × ∇h = t , t · ∇h = 0 , (C.2f,g)

∇ × n± = 0 , ∇ · t = 0 , (C.2h,i)

which we use repeatedly together with the vector identities of Appendix A in the
analysis below. We call a curve with t tangent to it at every point a geostrophic
contour C. Since they have the property t ·∇h = 0 [see (C.2g)], they lie on surfaces
h(x⊥) = constant (i.e. cylinders with generators aligned to the z–axis) and may
be identified collectively as C(h). That part of the surface lying within the fluid
−h− ≤ z ≤ h+ we refer to as the geostrophic cylinder S(h) with upper and lower
bounding geostrophic contours C±(h) lying on the surfaces Σ±.

Crucial to Taylor’s idea is the value of the volume flux Q ≡
∫
S(h)

u · dS out across
the geostrophic cylinder S(h), where dS = dl × ez dz is the surface element on
S(h), dl = t̂ dl is the line element on every C(h) and t̂ = t/|t| is the unit tangent
vector. Since there is no inflow across the caps Σ± within C±(h), mass continuity
(C.1b) requires that Q = 0. We now apply the depth integral 〈· · · 〉 =

∫ h+

−h−
· · · dz

to (C.1a) and integrate about a geostrophic contour C(h). Since
∮
C(h)

dl · ∇p = 0

(p is single valued) and since
∮
C(h)

2 (ez × 〈u〉) · dl = 2Q = 0, we obtain the
following generalised form ∮

C(h)

〈F〉 · dl = 0 (C.3)

of Taylor’s constraint.

THE SUFFICIENCY OF TAYLOR’S CONSTRAINT (C.3)

Though Taylor’s constraint (C.3) is a necessary condition for a solution of the bound-
ary value problem (C.1), it remains to establish that it is sufficient, which we ac-
complish here by constructing the explicit solution. The analysis below is based on
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Soward (1970; old unpublished notes, which were partially reported by Rotvig &
Jones, 2007).

We start by noting that the inhomogeneous equations (C.1) have the particular solu-
tion u = −1

2
∇ × F , p = ez · F , where

F(x⊥, z) ≡ 1
2

[∫ z

−h−

F(x⊥, z′) dz′ −
∫ h+

z

F(x⊥, z′) dz′
]

(C.4)

has the property ∂z F = F. It is also easy to show with the help of the various
identities listed in (C.2) that in the absence of the body force the geostrophic flow,
which solves 2 ez × uG = −∇pG, ∇ · uG = 0 and meets the boundary condition
uG · n = 0 on Σ, is uG = −(dΨG/dh) t, pG = 2ΨG, where ΨG(h) is an arbitrary
function of h. The method employed by Greenspan (1968, pp. 43, 44) to obtain that
geostrophic solution of the homogeneous problem suggests a solution construction
of the full inhomogeneous problem in the form

u − uG = − 1
2
∇ × F + 1

2
(v+ +v−) , v± = ∓n∓ × ∇Ψ± , (C.5a,b)

p − pG = ez · F + Ψ+ + Ψ− , (C.5c)

where, as yet, Ψ± are unknown functions of x⊥ alone. From (C.5b) and use of (C.2)
it follows that ez × v± = −∇Ψ± and ∇ · v± = 0. Accordingly the entire form
(C.5) satisfies the inhomogeneous equations (C.1). The application of the boundary
condition is more tricky but is needed to fix the unknown functions Ψ±(x⊥) . To that
end, however, we note that the forms of v± are motivated by the fact that v± ·n∓ = 0
on the boundaries Σ∓, though in general v± · n± �= 0 on Σ±.

To make further progress we utilise the identity

∇ × F = ∇⊥ × F + ez × F , (C.6a)

where ∇⊥ is the gradient normal to the rotation axis, i.e.

∇ ≡ ∇⊥ + ez ∂z . (C.6b)

Direct differentiation of (C.4) gives

∇⊥ × F = 1
2

[∫ z

−h−

∇⊥ × F dz −
∫ h+

z

∇⊥ × F dz + ∇h− × F− − ∇h+ × F+

]
,

(C.6c)
where F±(x⊥) ≡ F(x⊥, ±h±) . We supplement the results (C.6a,c) with

〈∇⊥ × F〉 = ∇ × 〈F〉 − ∇h− × F− − ∇h+ × F+ , (C.7a)
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which together show that the values of ∇ × F on the boundaries Σ± are

(∇ × F)± = ± 1
2
∇ × 〈F〉 ± n± × F± . (C.7b)

Armed with this result, substitution of the expression (C.5a) for u into the boundary
condition u · n = 0 on Σ yields

0 = 2u± · n± = ∇ ·
[
± 1

2
n± × 〈F〉 − Ψ± t

]
, (C.8)

where, of course, u±(x⊥) ≡ u(x⊥, ±h±). The solenoidal condition (C.8) is satis-
fied by

1
2
n± × (〈F〉 + ∇ Φ±) = ±Ψ± t = n± × n∓ Ψ± , (C.9a)

where as yet the functions Φ±(x⊥) are undetermined.

The scalar product of (C.9a) with n∓ gives

t · ∇ Φ± = − t · 〈F〉 . (C.9b)

Integration of (C.9b) along geostrophic contours C(h) determines Φ± up to a con-
stant of integration or, more precisely, a function of h. Significantly the functions
Φ±(x⊥) obtained this way are single valued due to the fact that 〈F〉 satisfies Taylor’s
constraint (C.3). Accordingly we write our solution in the form

Φ±(x⊥) = Φ(x⊥) + ΦG±(h) , (C.10)

where the single valued function Φ(x⊥) is any solution of (C.9b), while ΦG± are
arbitrary functions of h.

Finally the values of the functions Ψ±(x⊥) in (C.5) are obtained on taking the scalar
product of (C.9a) with t, which gives

Ψ± = ± 1
2
n± · A + ΨG± , ΨG± = 1

2

dΦG±

dh
, (C.11a,b)

where
A = − |t|−2 t × (〈F〉 + ∇Φ) . (C.11c)

Evidently the velocity contributions vG± = ∓n∓ × ∇ΨG± = − (dΨG±/dh) t to
(C.5b) are geostrophic and can be absorbed within uG by the simple expedient of
replacing the sum ΨG + 1

2
(ΨG− +ΨG+) by ΨG. Interestingly A(x⊥) is the solution

of
t × A = 〈F〉 + ∇Φ , t · A = 0 . (C.12a,b)

Thus given 〈F〉 satisfying Taylor’s constraint (C.3), Φ could be obtained from (C.9b)
and (C.10), then A from (C.11c) and Ψ± from (C.11a). Hence everything that (C.5)
requires is determined, (apart from the geostrophic flow), whenever t �= 0. The
condition t �= 0 is likely to hold almost everywhere except at isolated points or
curves, e.g. for a sphere at the poles and equator. In many mathematical models
the boundaries are planar and parallel. Then t = 0 everywhere and geostrophic
degeneracy ensues as considered below.
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PLANE PARALLEL BOUNDARIES

We consider briefly the case of plane parallel boundaries Σ±, separated everywhere
by the constant z–axial distance h , with outward normals which satisfy

±n± = n = constant and imply t = 0 . (C.13a,b)

Note that though in many applications n is parallel to ez (ez × n = 0), this re-
striction is not necessary and following Rotvig & Jones (2002) we make no such
assumption here. For the case (C.13), much of our previous analysis continues to
hold but with a few modifications.

We begin by noticing that, in the case of non-parellel boundaries (t �= 0) just con-
sidered, the vectors v± introduced in (C.5) did not satisfy all the boundary condi-
tions, specifically v± · n± �= 0 on Σ±, which is why we refrained from referring
to those contributions as geostrophic flows. That is no longer the case for our de-
generate case of plane parallel boundaries. So without loss of generality we let
Ψ±(x⊥) = ΨG(x⊥) and call v±(x⊥) = uG(x⊥) the geostrophic velocity. Since
there are no geostrophic contours (t = 0), the function ΨG is an arbitrary function
of x⊥. Accordingly, in place of (C.5), we write

u − uG = − 1
2
∇ × F + w ez , uG = n × ∇ΨG , (C.14a,b)

p − pG = ez · F , pG = 2ΨG , (C.14c,d)

in which we have also allowed for the possibility that there is some additional axial
mean velocity w(x⊥)ez to accommodate the loss of one of the two independent
arbitrary vector functions Ψ±(x⊥)n± under the geostrophic degeneracy of the plane
layer.

Substitution of (C.14a,b) into the boundary condition u · n = 0 on Σ yields

0 = 2u± · n± = −n ·
(

1
2
∇ × 〈F〉

)
± 2 w (C.15)

in place of (C.8); remember that t = 0. It follows that

n · (∇ × 〈F〉) = 0 and w = 0 (C.16a,b)

everywhere. The former result n · (∇ × 〈F〉) = 0 also follows directly from Tay-
lor’s constraint

∮
C〈F〉 · dl = 0, which in our degenerate plane geometry holds for

arbitrary closed curves C on any plane with normal n. Furthermore (C.16a) is satis-
fied [as in (C.9a)] by

n × (〈F〉 + ∇ Φ) = 0 , (C.17)

where Φ is an arbitrary function of x⊥ alone.
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Additional insight is obtained by evaluating the depth integral of (C.1), which gives

2 ez × 〈u〉 = −∇〈p〉 − (p+ − p−)n + 〈F〉 , ∇ · 〈u〉 = 0 , (C.18a,b)

where, as usual, p±(x⊥) ≡ p(x⊥, ±h±). On taking the scalar product of (C.18a)
with ez, we note that the z–component of 〈F〉 determines, the pressure jump

p+ − p− = ez · 〈F〉 (C.19a)

between the boundaries. Then consideration of ez × [n × (〈F〉+∇Φ)] in conjunc-
tion with (C.17) and (C.19a) leads to the identity

(p+ − p−)n = (ez · 〈F〉)n = 〈F〉 + ∇ Φ (C.19b)

analogous to (C.12). The existence of some Φ(x⊥) that enables (C.19b) to be satis-
fied is the essence of Taylor’s constraint (C.16a) in our planar geometry.

With the help of (C.19b), the depth integral equation (C.18a) reduces to

ez × 〈u〉 = −∇ (hΨ⊥) , (C.20a)

where

2hΨ⊥ = 〈p〉 + Φ and 〈p〉 = 〈ez · F〉 + 2hΨG (C.20b,c)

results from the integration of (C.14c,d). Since Ψ⊥(x⊥) is arbitrary, albeit linked
to the arbitrary function Ψ(x⊥) via (C.20b,c), the mean velocity h−1〈u⊥〉 = ez ×
∇ Ψ⊥, where 〈u⊥〉 ≡ 〈u〉−(ez ·〈u〉) ez is the projection of 〈u〉 onto the (x, y)–plane,
is independent of the force F. In contrast, the depth integrated velocity component
normal to the boundary is influenced directly by F via (C.14a), which gives the
generally non-zero value

n · 〈u〉 = − 1
2
n · 〈∇ × F〉 . (C.21a)

In turn, that fixes the mean axial velocity component:

h−1ez · 〈u〉 = h−1〈u⊥〉 · ∇h+ − 1
2
h−1n · 〈∇ × F〉 . (C.21b)

The essence of our results are summarised succinctly by (C.14), in which w = 0,
together with Taylor’s constraint (C.16a). However the representation (C.19b) of
〈F〉, in terms of the potential Φ, sheds further light on the nature of the mean velocity
h−1〈u〉 as revealed by the component h−1〈u⊥〉 = ez × ∇ Ψ⊥ in the (x, y)–plane
[mainly through the link (C.20b,c) between the stream functions Ψ⊥ and ΨG] and
the component (C.21b) in the z–direction.
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APPENDIX D

UNITS

Scientific units used in this book are the standardized SI units (Système Interna-
tional). Since part of the literature on the subject (mostly in astrophysics) uses the
Gaussian or CGS electromagnetic units (emu) system, we describe here the main
differences between these units.

Physical Quantity SI unit Gaussian CGS emu unit

Length 1 m 102 cm
Mass 1 kg 103 g
Magnetic indiction B 1 Tesla (T)=1 kg A s−2 104 Gauss (G)
Magnetic Field H 1 A m−1 4π × 10−3 Oersted (Oe)
Magnetic flux 1 Weber (Wb) 108 Maxwell (Mx)
Electric field 1 V m−1 106 volt cm−1

Charge 1 Coulomb (C) 10−1 coulomb
Charge density 1 C m−3 10−7 coul cm−3

Electric current 1 Ampere (A) 10−1 ampere
Electric current density 1 A m−2 10−5 amp cm−2

Resistance 1 Ohm (Ω) 109 cm s−1

Resistivity 1 Ω m 1011 cm2 s−1

Conductance 1 siemens (S) 10−9 cm−1 s
Conductivity 1 S m−1 1011 emu
Magnetic permeability 1 H m−1 107/4π G Oe−1

Force 1 Newton (N) 105 dynes
Energy 1 Joule 107 erg
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Other unit conversions:

1 astronomical unit (AU) 1.495979 × 1011 m
1 parsec (pc) 3.085678 × 1016 m
1 light year 9.460530 × 1015 m
1 solar radius (R�) 6.9599 × 108 m
1 solar mass (M�) 1.9891 × 1030 kg
1 eV 1.602 177 × 10−19 Joule
0 ◦C 273.15 K
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APPENDIX E

ABBREVIATIONS
Notation Meaning Context
ABC–flow Arnold–Beltrami–Childress Fast dynamos (e.g. p.46)
BRA Boussinesq–Reynolds Ansatz Turbulence (e.g. p.236)
CMB Core-Mantle Boundary Geophysics
CZ Convective Zone Solar physics
DNS Direct Numerical Simulation Turbulence
DTS Derviche Tourneur Sodium Experiments (e.g. p.378)
EDQN Eddy-Damped Quasi-Normal Markovian Turbulence (e.g. p.90)
EMF ElectroMotive Force General (e.g. p.34)
GP–flow Galloway–Proctor Fast dynamos (e.g. p.31)
GS Grid Scale Turbulence (e.g. p.230)
GSV Geomagnetic Secular Variation Geophysics
ICB Inner-Core Boundary Geophysics
LES Large Eddy Simulation Turbulence
MAC Magnetic–Archimedean–Coriolis Geophysics
MFE Mean Field Electrodynamics Dynamo
MHD MagnetoHydroDynamic General (e.g. p.6)
MRI Magneto–Rotational Instability MHD (e.g. p.310)
ODE Ordinary Differential Equation General
PDE Partial Differential Equation General
ICB Inner Core Boundary Geophysics
ISM InterStellar medium Astrophysics
SGS Sub-Grid Scales Turbulence (e.g. p.230)
SN Supernova star Astrophysics
STF Stretch–Twist–Fold Fast dynamos (e.g. p.47)
UPOs Unstable Periodic Orbits Dynamical systems (e.g. p.117)
VKS Von Kármán Sodium Experiments (e.g. p.377)
WKBJ Wentzel–Kramers–Brillouin–Jeffreys Asymptotics (e.g. p.157)
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Courtillot V. & Le Mouël J.-L., Time variations of the Earth’s magnetic field: from daily to
secular, Ann. Rev. Earth Planet. Sci., 16, 389–476 (1988).

Courtillot V., Gallet Y., Le Mouel J.L. Are there connections between the Earth’s magnetic
field and climate? Earth Planet. Sci. Lett., 253, 328–339 (2007).

Courvoisier A., Hughes D.W. & Tobias S.M., α Effect in a Family of Chaotic Flows, Phys.
Rev. Lett., 96, 034503 (2006).

© 2007 by Université Joseph Fourier



438 MATHEMATICAL ASPECTS OF NATURAL DYNAMOS

Covas E., Moss D. & Tavakol R., The influence of density stratification and multiple non-
linearities on solar torsional oscillations, Astron. Astrophys., 416, 775–782 (2004).

Covas E. & Tavakol R., Multiple forms of intermittency in partial differential equation dy-
namo models, Phys. Rev. E, 60, 5435–5438 (1999).

Covas E., Tavakol R., Ashwin P., Tworkowski A. & Brooke J., In-out intermittency in par-
tial differential equation and ordinary differential equation models, Chaos, 11, 404–409
(2001a).

Covas E., Tavakol R., Moss D. & Tworkowski A., Torsional oscillations in the solar convec-
tion zone, Astron. Astrophys., 360, L21–L24 (2000).

Covas E., Tavakol R. & Moss D., Dynamical variations of the differential rotation in the
solar convection zone, Astron. Astrophys., 371, 718–730 (2001b).

Covas E., Tavakol R., Tworkowski A. & Brandenburg A., Axisymmetric mean field dynamos
with dynamic and algebraic α-quenchings, Astron. Astrophys., 329, 350–360 (1998).

Covas E., Tworkowski A., Brandenburg A. & Tavakol R., Dynamos with different formula-
tions of a dynamic α–effect, Astron. Astrophys., 317, 610–617 (1997).

Covas E., Tworkowski A., Tavakol R. & Brandenburg A., Robustness of truncated αΩ-
dynamos with a dynamic α, Sol. Phys., 172, 3–9 (1997).

Cowling T.G., The magnetic field of sunspots, Mon. Not. R. Astr. Soc. 94, 39–48 (1934).
Cowling T.G., Sunspots and the solar cycle, Nature, 255, 189–190 (1975).
Cox D.P., The diffuse interstellar medium. In The Interstellar Medium in Galaxies, H.A. Thron-

son & J.M. Shull Eds., Kluwer, Dordrecht, 181–200 (1990).
Cox J.P., Principles of Stellar Structure, 2 volumes, Gordon & Breach, New York (1968).
Davidson P.A., An Introduction to Magnetohydrodynamics, Cambridge University Press,

U.K. (2001).
De Young D., Turbulent generation of magnetic fields in extragalactic radio sources, Astro-

phys. J., 241, 81–97 (1980).
Dehant V., Van Hoolst T., de Viron O., Greff-Lefftz M., Legros H. & Defraigne P., Can a

solid inner core of Mars be detected from observations of polar motion and nutation of
Mars? J. Geophys Res.-Planet, 108, 5127 (2003).
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des régions d’émission, Astron. Astrophys., 38, 15–28 (1975).
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regulated interstellar medium: simulations of the turbulent multiphase medium, Astro-
phys. J., Lett., 514, L99–L102 (1999a).

Korpi M.J., Brandenburg A., Shukurov A. & Tuominen I., Evolution of a superbubble in a
turbulent, multi-phased and magnetized ISM, Astron. Astrophys., 350, 230–239 (1999b).

Kosovichev A.G. & Schou J., Detection of zonal shear flows beneath the Sun’s surface from
f-mode frequency splitting, Astrophys. J., 482, 207–210 (1997).

Kraichnan R.H., Consistency of the Alpha-Effect Turbulent Dynamo, Phys. Rev. Lett., 42,
1677–1680 (1979).

Krasheninnikova Yu.S., Ruzmaikin A.A., Sokoloff D.D. & Shukurov A., Configuration of
large-scale magnetic fields in spiral galaxies, Astron. Astrophys., 213, 19–28 (1989).

Krause F. (Ed.) The cosmic dynamo, Dordrecht: Kluwer (1993).

© 2007 by Université Joseph Fourier



REFERENCES 449

Krause M., Beck R. & Hummel E., The magnetic field structures in two nearby spiral galax-
ies. I. The axisymmetric spiral magnetic field in IC342, Astron. Astrophys., 217, 1–17
(1989a).

Krause M., Beck R. & Hummel E., The magnetic field structures in two nearby spiral galax-
ies. II. The bisymmetric spiral magnetic field in M81, Astron. Astrophys., 217, 17–30
(1989b).
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Rädler K.-H., Apstein E., Rheinhardt M. & Schüler M., The Karlsruhe dynamo experiment,
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